THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

Similar documents
Lecture 18 - Beyond the Standard Model

Strings, Exceptional Groups and Grand Unification

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Luis & SUSY. G. Ross, Madrid, March 2013

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

E 6 Spectra at the TeV Scale

Heterotic Supersymmetry

The discrete beauty of local GUTs

Introduction to Supersymmetry

Beyond the Standard Model

Crosschecks for Unification

Split SUSY and the LHC

Physics Beyond the Standard Model at the LHC

Supersymmetry, Dark Matter, and Neutrinos

Nucleon Decay. Stuart Raby. DUSEL 2010 Rapid City, SD October 2, 2010

The Matter-Antimatter Asymmetry and New Interactions

Split Supersymmetry A Model Building Approach

Grand Unification and Strings:

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Supersymmetry V. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Strings and Particle Physics

Neutrino masses respecting string constraints

Proton decay theory review

Elements of Grand Unification

Whither SUSY? G. Ross, RAL, January 2013

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The Constrained E 6 SSM

U(1) Gauge Extensions of the Standard Model

Constraining minimal U(1) B L model from dark matter observations

Leptogenesis with type II see-saw in SO(10)

Lepton-flavor violation in tau-lepton decay and the related topics

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

A Domino Theory of Flavor

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

SU(3)-Flavons and Pati-Salam-GUTs

Neutrinos: status, models, string theory expectations

Searches for Beyond SM Physics with ATLAS and CMS

Whither SUSY? G. Ross, Birmingham, January 2013

SUSY Phenomenology & Experimental searches

Neutrino Mass in Strings

Supersymmetry Breaking

The Physics of Heavy Z-prime Gauge Bosons

Implications of a Heavy Z Gauge Boson

Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models

THE QUEST FOR UNIFICATION

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Neutrinos and Fundamental Symmetries: L, CP, and CP T

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

Natural SUSY and the LHC

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

String Theory in the LHC Era

Geography on Heterotic Orbifolds

Proton Decay and GUTs. Hitoshi Murayama (Berkeley) Durham July 20, 2005

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Is SUSY still alive? Dmitri Kazakov JINR

The Standard Model of particle physics and beyond

Beyond the SM, Supersymmetry

Supersymmetry Basics. J. Hewett SSI J. Hewett

Status and Phenomenology of the Standard Model

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Naturalizing SUSY with the relaxion and the inflaton

Minimal SUSY SU(5) GUT in High- scale SUSY

Sterile Neutrinos from the Top Down

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

BNV and LNV in MSSM. Mu-Chun Chen, University of California, Irvine

Proton Decay Without GUT. Hitoshi Murayama (IAS) UCLA Dec 3, 2003

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

The Standard Model and beyond

String Phenomenology

Exceptional Supersymmetry. at the Large Hadron Collider

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University

(Extra)Ordinary Gauge Mediation

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Aspetti della fisica oltre il Modello Standard all LHC

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

Little Higgs Models Theory & Phenomenology

Baryon and Lepton Number Violation at the TeV Scale

Supersymmetric Grand Unification

Heterotic Brane World

How high could SUSY go?

XI. Beyond the Standard Model

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Higgs Signals and Implications for MSSM

Probing the Planck scale with Proton Decay. Hitoshi Murayama (Berkeley) ICRR Mozumi July 27, 2004

From Friday: Neutrino Summary. Three neutrinos in the Standard Model:!e,!µ,!" Only left-handed neutrinos and right-handed antineutrinos are observed.

The Standard Model and Beyond

35 years of GUTs - where do we stand?

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

Proton Lifetime Upper Bound in Non-SUSY SU(5) GUT arxiv: v1 [hep-ph] 20 Dec 2018

Foundations of Physics III Quantum and Particle Physics Lecture 13

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

String Compactifications and low-energy SUSY: The last attempts?

Perspectives Flavor Physics beyond the Standard Model

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Transcription:

THE DREAM OF GRAND UNIFIED THEORIES AND THE HC atsis symposium, Zurich, 2013 Graham Ross

The Standard Model after HC 8 u Symmetries è Dynamics Gauge bosons Chiral Matter Higgs u i d i SU(3) SU(2) U(1) H + H 0, u ir, d ir, l i ν i W ±, Z, h 0, l ir, ν ir u Unanswered questions - Gauge and multiplet structure? - Charges? - 18(27) parameters? - Neutrino masses? - Baryogenesis? - Dark matter? - Strong CP problem? The Higgs Era

Grand Unification (String Unification) e.g. SO(10) d c } d SU (3) ( c 5 ) : d c Q? e ν } SU (2) e SU (5) SU (3) SU (2) U (1) 3 + = 0 Q c = d Q e 1/ 3 u Unanswered questions - Gauge and multiplet structure(?) - Charges - 18 (27) parameters? - Neutrino masses? - Baryogenesis? - Dark matter? - Strong CP problem? Georgi Glashow 1974 ( 10 ) : u c - u c u d u c u d u d e c (16) = (10) + (5) + ( 1) { H states SU(2) doublets ν e, c ν e,r

Grand Unification (String Unification) 45 24 12 e.g. SO(10) SU (5) SU (3) SU (2) U (1) g g g g } 5 3 2 1 d c d c SU (3) ( 5 ) } : d c e } (X,Y ) µ, M X 10 15 16 GeV ν SU (2) e u Unanswered questions - Gauge and multiplet structure(?) - Charges - 23 parameters? - Neutrino masses - Baryogenesis - Dark matter? - Strong CP problem ( 10 ) : u c - u c u d u c u d u d e c (16) = (10) + (5) + ( 1) { <H> m ν < H >2 m ν R <H> m 2 l,q 9 11 13 15 17 og 10 [Energy Scale (GeV)] ν ν R ν m ν R Smirnov

BUT

Doublet-Triplet splitting problem: Higgs doublet H + H 0 but no SU(5) colour triplet partner H H H _ H - H 0 }? The Standard Model as an EFT: H A µ, Ψ H m h 2 (Q 2 ) = m h 2 + δ m h 2 (Q 2 ) X µ δ m 2 h M 2 X ln Q2 2 + M X µ 2 = O(1015 GeV ) The hierarchy problem!

Doublet-Triplet splitting problem: Higgs doublet H + H 0 but no SU(5) colour triplet partner H H H _ H - H 0 }? The Standard Model as an EFT: H A µ, Ψ H m h 2 (Q 2 ) = m h 2 + δ m h 2 (Q 2 ) δ m 2 2 h M SUSY ln Q2 2 + M X µ 2 Solution Supersymmetric GUTs - M SUSY 1TeV X µ H X

Grand Unification, String Unification e.g. SO(10) SU (5) SU (3) SU (2) U (1) g 5 g 3 g 2 g 1 gauge coupling unifica3on ( 5 ) : d c d c dc e ν e } SU (3) } SU (2) ( 10 ) : u c - u c u d u c u d u d e c (16) = (10) + (5) + (1) M SUSY TeV Dimopoulos. Georgi Ibanez, GGR Dimopoulos, Raby, Wilczek

1 SUSY@TeV? HC SUSY searches so far negative m g, q > 1 1.5 GeV SP mass [GeV] 800 700 600 500 400 300 200 100 g- ~ g ~ production, CMS Preliminary s = 8 TeV HCP 2013 Observed SUSY Observed -1 σ theory Expected m(gluino) - m(sp) = 2 m(top) g ~ t t χ -1 SUS-12-024 0-lep (E T +H T ) 19.4 fb -1 SUS-13-007 1-lep (n 6) 19.4 fb jets 0 500 600 700 800 900 1000 1100 1200 1300 1400 1500 0 1-1 SUS-12-017 2-lep (SS+b) 10.5 fb -1 SUS-13-008 3-lep (3l+b) 19.5 fb gluino mass [GeV] [GeV] m 0 1000 95% C limits. SUSY theory not included. 0-lepton, 7-10 jets [ int -1 = 20.3 fb ] 600 400 200 ~ 0 g- ~ g production, ~ g tt, 1 ATAS-CONF-2013-054 0-lepton, 3 b-jets ATAS-CONF-2012-145 800 3-leptons, 4 jets ATAS-CONF-2012-151 1 tt 0 g ~ forbidden ATAS Preliminary s = 8 TeV -1 [ = 12.8 fb ] int -1 [ = 12.8 fb ] int -1 2-SS-leptons, 0-3 b-jets[ = 20.7 fb ] int ATAS-CONF-2013-007 Status: HCP 2013 Expected Observed Expected Observed Expected Observed Expected Observed 500 600 700 800 900 1000 1100 1200 1300 m~ [GeV] g Significance? Fine tuning measure Δ (not optional in likelihood fit!) δ m 2 h a i m 2 i + b i M 2 i +..., a i,b i log M X q,l g,w,b m h Ghilencea, GGR Casas et al ( 2 δ m ) h i 2 m h 20 still room for SUSY! Δ δ m 2 h,i 2 m h (C)GNMSSM Kaminska, GGR, Schmidt- Hoberg

GUTs - Nucleon decay SU(5) SU (3) SU(2) U (1) ( 5 ) : d c d c dc e e } : X µ New lepto-quark gauge interactions p M X π 0 e + } u d c ( 10 ) : u c -u c u d u c u d u d e c u X µ τ M X 4, τ p e + π 0 > 1 10 34 yrs, M X > 10 16 GeV e +

SUSY GUTS Nucleon decay 1 Λ QQQ F τ p e + π 0 > 1 10 34 yrs, M X > 10 16 GeV τ p K + ν > 3.3 1033 yrs Λ > 10 27 GeV, 10 9 M Planck Raby Murayama et al

SUSY GUTS Nucleon decay 1 Λ QQQ F τ p e + π 0 > 1 10 34 yrs, M X > 10 16 GeV τ p K + ν > 3.3 1033 yrs, Λ > 10 27 GeV, 10 8 M Planck Recent developments: GUT SU(5), SO(10) µ-term small (Higgsino mass) Anomaly free (discrete) symmetry No D=5 Discrete R-symmetry Z 4 R... Split multiplets (Higgs) Higher dimension e.g.string unification ee et al Ratz et al Doublet Triplet splitting

Doublet-Triplet splitting from higher dimensions Compactification: K = K 0 / H freely acting discrete group Wilson line breaking: W : H G Massless states: embedding of H into gauge group G H H singlets W = P exp i T a A a m dx m γ Breit, Ovrut, Segre 2iπ /3 e.g. SU(5) : H = Z 3, H = Diag(α,α,α,1,1), α = e ( R R) : (1 5) H H 0 1 ( ) e, 3,5 ν e 1 d c d c d c α 2, Matter ( 3,5 + 10)

SUSY-GUT gauge coupling unification 2 sin θ W = 0.2312 ± 0.0002 I Ghilencea, GGR sin 2 θ W = 0.23116(12) (Expt) α s = 0.134 ± 0.01 4(sin 2 θ W 0.23116) c. f. 0.1184(7) (Expt)?

c.f. String Unification - Weakly Coupled Heterotic String HS 10 φ 4 ki 2 eff = d x ge ( R+ TrF...) 4 3 i + α' α' } 4 d xv } 1 α 10 α = 2 ' 1/ M string only scale Gross, Harvey,Martinec, Rohm G 4 3 = αα ' 10 ' αα 10 ' αstringα N, α = String G = N 64πV 16πV 4 1 g i 2 ( M Z ) = k i + b ln Mstring 2 i g string M Z + Δ i M string = g string.m Planck = 3.6 1017 GeV Kaplunovsky

String unification with gravity 10-60 WCHS MU = M P E 17 3.6 10 GeV?..close..but not close enough!..string threshold corrections, Δ i? I sin 2 θ W = 0.23116(12) (Expt) GGR, D.Ghilencea MU = (2.5 ± 2).10 16 GeV α s = 0.134 ± 0.01 4(sin 2 θ W 0.23116) c. f. 0.1184(7) (Expt)

SU (5) SU (3) SU (2) U ( 1) n =±1... XY, Δ i String threshold effects, : Wilson line breaking 3, 2,1 } M GGR Raby Ratz 1 ( σ) = χ + ( n+ ρ σ ) R 2 2 2 n 2 n = 0 3, 2,1 β ( σ) β β ( σ) XY, SU(5) i i 2 2 m+ + m = l og ( m ρ ). ( log( ρ) log( ρ) ) 4π 4π Reduction in X,Y boson contribution - equivalent to reduction in unification scale.

Precision Unification possible String unification with gravity 10-60 M P E + Wilson line breaking e.g. Z 3 : SU (5) SM M WCHS U = 6.10 16 GeV, δ (α s ) = 0.008 I sin 2 θ W = 0.23116(12) (Expt) GGR, D.Ghilencea GGR M U = (2.5 ± 2).10 16 GeV α s = 0.126 ± 0.01 4(sin 2 θ W 0.23116) c. f. 0.1184(7) (Expt)?

Summary Gauge, matter multiplets GUT SU(5), SO(10), Hierarchy problem SUSY GUT µ-term Z R 4 orentz symmetry D>4 Doublet-triplet splitting Wilson line breaking Precision gauge and gravity coupling unification possible α s = 0.126 ± 0.01 4(sin 2 θ W 0.23116) M U = (2.5 ± 2).10 16 GeV Family replication and masses String compactification GUT relations m b = m τ, Det[M d ] = Det[M l ] Family symmetries (?)

Summary Gauge, matter multiplets GUT SU(5), SO(10), Hierarchy problem SUSY GUT µ-term Z R 4 orentz symmetry D>4 Doublet-triplet splitting Wilson line breaking Precision gauge and gravity coupling unification possible α s = 0.126 ± 0.01 4(sin 2 θ W 0.23116) M U = (2.5 ± 2).10 16 GeV Family replication and masses String compactification GUT relations m b = m τ, Det[M d ] = Det[M l ] Family symmetries (?) Soft masses radiative breaking Ibanez,GGR

Outlook indirect signals Nucleon decay D=6 operators Operator renormalisation τ SuperK p e + π 0 > 1 10 34 yrs Hadronic matrix element Giudice, Romanino c. f. M U = (2.5 ± 2).10 16 GeV

Outlook indirect signals Nucleon decay D=6 operators Neutrino masses see-saw Majorana mass violation: m ν < H >2 m ν R m l,q 2 m ν R Baryogenesis via eptogenesis ν R decay: Thermal leptogenesis m ν < 0.1eV, m ν R1 > 4 10 8 GeV Buchmuller review

Outlook indirect signals Nucleon decay D=6 operators Neutrino masses see-saw FCNC q, l,ν mixing Egede Beneke

e.g. epton FCNC: ( ) m Γ µ eγ ( 2 ) 12 = f l erh 1 + f ν ν R h 2 + m ν R ν R ν R ( 2 m ) ij 1 ( )( f ν f ) ν ij log m ν R 3m 2 2 8π 2 0 + A 0 M U Borzumati, Masiero

Outlook indirect signals Nucleon decay D=6 operators Neutrino masses see-saw FCNC q, l,ν mixing SUSY @ HC, SUSY Higgs Sphicas Dark Matter SUSY WIMP, Axions f axion > 10 9 GeV Sarkar, Aprile

Outlook indirect signals Nucleon decay D=6 operators Neutrino masses see-saw FCNC q, l,ν mixing SUSY @ HC, SUSY HC Higgs 14! Dark Matter SUSY WIMP, Axions Sphicas f axion > 10 9 GeV Sarkar, Aprile

Unification in split SUSY Giudice, Romanino