molecules ISSN

Similar documents
molecules ISSN

molecules ISSN by MDPI

2018 Jahangirnagar University Journal of Science Vol. 41, No.1, pp.31-42

General Papers ARKIVOC 2004 (i) 71-78

Journal of Asian Scientific Research (2,4- DIOXO-1,4 - DIHYDRO - 2H - QUINAZOLIN YL) - ACETIC ACID HYDRAZIDE: SYNTHESIS AND REACTIONS

5-Furan-2yl[1,3,4]oxadiazole-2-thiol, 5-Furan-2yl-4H [1,2,4] triazole-3-thiol and Their Thiol-Thione Tautomerism

Synthesis of 2,5,7-triamino[1,2,4]triazolo[1,5-a][1,3,5]triazines as potential antifolate agents

Microwave Irradiation Versus Conventional Method: Synthesis of some Novel 2-Substituted benzimidazole derivatives using Mannich Bases.

Synthesis and Structural Studies of 3-Imino-5-Dimethylamino- 7-Aryl/Alkylimino-1,2,4,6 Thiatriazepines

SYNTHESIS AND ANTIBACTERIAL EVALUATION OF NOVEL 3,6- DISUBSTITUTED COUMARIN DERIVATIVES

DERIVATIVES OF PHTALIC ACID ANHYDRIDE I. SYNTHESIS AND STUDIES OF REACTION PHTHALIC ACID ANHYDRIDE

Serendipitous synthesis of 1,4-benzothiazin derivatives using 2-[(2-aminophenyl)disulfanyl]aniline

Modified Methods for the Synthesis of Carbazole from Phenothiazine

Chia-Shing Wu, Huai-An Lu, Chiao-Pei Chen, Tzung-Fang Guo and Yun Chen*

Syntheses and Biological Activities of 6-Aryl-3-(3-hydroxypropyl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazines

SYNTHESIS AND CHARACTERIZATION OF 2-[1H- BENZIMIDAZOLE- 2YL- SULFANYL]-N-{(E) )-[4-(DIMETHYL AMINO) PHENYL] METHYLIDENE} ACETOHYDRAZIDE

Studies on Synthesis of Pyrimidine Derivatives and their Pharmacological Evaluation

Journal of Chemical and Pharmaceutical Research

Synthesis and Absorption Spectral Properties of Bis-methine Dyes Exemplified by 2,5-Bis-arylidene-1-dicyanomethylene-cyclopentanes

Synthesis and Antimicrobial Activities of 1,2,4-Triazole and 1,3,4-Thiadiazole Derivatives of 5-Amino-2-Hydroxybenzoic Acid

Journal of Global Pharma Technology

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered.

International Journal of Applied and Advanced Scientific Research (IJAASR) Impact Factor: 5.255, ISSN (Online): (

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

ISATIN (PER-O-ACETYL- -D- GALACTOPYRANOSYL)THIOSEMICARBAZONES

Terpenoids: Investigations in Santonin Chemistry

SYNTHESIS AND PHOTOCHEMICAL STUDY OF POLY(VINYL CHLORIDE) - 1,3,4-OXADIAZOLE AND 1,3,4-THIADIAZOLE

Appendix A. Supplementary Information. Design, synthesis and photophysical properties of 8-hydroxyquinoline-functionalized

Supporting Information for:

Synthesis of N-(3(5)-Aryl-1,2,4-triazol-5(3)-yl)-N -carbethoxythioureas and Their Tautomerism in DMSO Solution

Phil S. Baran*, Jeremy M. Richter and David W. Lin SUPPORTING INFORMATION

Supporting Information For:

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

1,3-Oxazines and Related Compounds. XIII.1) Reaction of Acyl Meldrum's. Acids with Schiff Bases Giving 2,3-Disubstituted 5-Acy1-3,4,5,6-

Babak Karimi* and Majid Vafaeezadeh

Synthesis and Characterization of Some New Aminoimidazoles

Amination of anthra[1,9-cd:5,10-c,d,]bisisoxazole by alkylamines

Synthesis of RP 48497, an Impurity of Eszopiclone

Maharashtra, India. Departments of Chemistry, R.C.Patel ASC College, Shirpur , Maharashtra, India

Synthesis and spectral characterization of related compounds of riluzole, an amyotrophic lateral sclerosis drug substance

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

molecules ISSN

Supplementary Materials. Table of contents

molecules ISSN

Synthesis and Antibacterial Activities of Novel 2,5-Diphenylindolo[2,3-e] Pyrazolo[1',5':3",4"]pyrimido[2",1"-c] [1,2,4]triazines

Supporting Information for

Supporting Information

hydroxyanthraquinones related to proisocrinins

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

General Papers ARKIVOC 2007 (xvi) 65-72

Chapter IV. Secondary Ammonium Salts

Organic Chemistry: An Indian Journal

Synthesis of oxo analogs of Lamotrigine and related compounds 1

Parallel sheet structure in cyclopropane γ-peptides stabilized by C-H O hydrogen bonds

A Photocleavable Linker for the Chemoselective Functionalization of Biomaterials

Fluorescence Studies of Selected 2-Alkylaminopyrimidines

β-oxo anilides in heterocyclic synthesis: Synthesis of tri- and tetracyclic heteroaromatic containing a bridgehead nitrogen atom

Cole Curtis, Chemistry 213. Synthetic #1 FFR. Synthesis and Characterization of 4-methoxychalcone

216 S10-Exam #1 Page 2. Name

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Synthesis, characterization and antimicrobial activity of benzene- (1 /, 4 / -diimine)-substituted-4,4-10h-diphenothiazine derivatives

The Synthesis of Triphenylmethano. will synthesize Triphenylmethanol, a white crystalline aromatic

Supporting Information for: Tuning the Binding Properties of a New Heteroditopic Salt Receptor Through Embedding in a Polymeric System

Synthesis of Fused Heterocyclic Rings Incorporating Pyrrolo[2,1-b]benzothiazole Moiety

Pelagia Research Library. A one pot synthesis of 1,3-benzoxazines from schiff s bases

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

pyrazoles/isoxazoles library using ketene dithioacetals

Honors Cup Synthetic Proposal

Pyrimidine Acyclo-C-Nucleosides by Ring Transformations of 2- Formyl-L-arabinal

Supplementary Figure 1 IR Spectroscopy. 1Cu 1Ni Supplementary Figure 2 UV/Vis Spectroscopy. 1Cu 1Ni

Chemistry 3371: Inorganic Chemistry II Laboratory Manual

Synthesis and Computational studies of synthesized 3-(4 -Bromophenyl)-5-(aryl substituted) Isoxazole derivatives

SYNTHESIS OF 15 N-LABELED ISOMERS OF 5-NITRO-2,4-DIHYDRO-3H-1,2,4-TRIAZOL-3-ONE (NTO)

Baraa H. Latief et al /J. Pharm. Sci. & Res. Vol. 10(12), 2018,

Synthesis and Characterization of 2-Amino-4- methylbenzothiazole as an Origin Intermediate for a Useful Fungicide Production

Halogen halogen interactions in diiodo-xylenes

1 hour 45 minutes plus your additional time allowance

Synthesis and Characterization of 9-Phenyl-9H-purin-6-amines from 5-Amino-1-phenyl- 1H-imidazole-4-carbonitriles

Supplementary Materials

molecules ISSN

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

Working with Hazardous Chemicals

Photolysis for Vitamin D Formation. Supporting Information

CONDENSATION OF N1TROMETHANE AND NITROETHANE WITH ETHYL MALEATE AND FUMARATE IN THE PRESENCE OF POTASSIUM FLUORIDE*

Journal of Chemical and Pharmaceutical Research, 2012, 4(5): Research Article

Experiment 2 Solvent-free Aldol Condensation between 3,4-dimethoxybenzaldehyde and 1-indanone

Synthesis and Use of QCy7-derived Modular Probes for Detection and. Imaging of Biologically Relevant Analytes. Supplementary Methods

Stille-type cross coupling reactions with tetraalkynyl stannanes

Supporting Information

Preparation of Substituted Methyl o-nitrophenyl Sulfides

Experiment 12: Grignard Synthesis of Triphenylmethanol

Synthesis and Antibacterial Activities of New Metronidazole and Imidazole Derivatives

Synthesis And Biological Evaluation Of 1-(4-P-Toluidino)-6- (Diphenylamino)-1,3,5-Triazine 2-yl- 3-Methyl -2,6- Diphenyl Piperidine-4-One.

Synthesis of potential related compounds of Cefdinir

Supporting Information. Excited State Relaxation Dynamics of Model GFP Chromophore Analogs: Evidence for cis-trans isomerism

Synthesis of Some Benzimidazolyl Pyrazole Derivatives Under Microwave Irradiation and their Antimicrobial Activities

Supporting Information

Transcription:

Molecules 2005, 10, 1153-1160 molecules I 1420-3049 http://www.mdpi.org ynthesis of Thiadiazoles and 1,2,4-Triazoles Derived from yclopropane Dicarboxylic Acid. A. ussain K. harba*, Rida.Al-Bayati, adjet Rezki and Mohammed R. Aouad Department of hemistry, ollege of cience, Al-Mustansirya University, Baghdad, Iraq. * Author to whom correspondence should be addressed; e-mail: hussainirk@yahoo.com Received: 29 June 2005; in revised form: 29 August 2005 / Accepted: 30 August 2005 / Published: 30 eptember 2005 Abstract: ew heterocyclic derivatives of cyclopropane dicarboxylic acid comprising thiadiazole and 1,2,4-triazole moieties are reported. Reaction of 1,1-cyclopropane dicarboxylic acid (1) with thiosemicarbazide and phosphorous oxychloride resulted in 1,1-bis (2-amino-1,3,4-thiadiazol-5- yl)cyclopropane (2). yclopropane dicarboxylic acid thiosemicarbazide (6) was converted into 1,1-bis(3-thio-4-1,2,4-triazol-5-yl) cyclopropane (7) by ring closure in an alkaline medium. The thiadiazole 2 and the triazole 7 were converted into a variety of derivatives. Keywords: Bis-thiadiazolylcyclopropane, bis triazolylcyclopropane, azomethines, Mannich bases. Introduction Thiadiazoles, oxadiazoles and triazoles are five membered rings associated with diverse biological and pharmacological properties [1]. For example, triazole derivatives are active as antibacterial, antiviral and insecticidal agents [2]. ubstituted 1,2,4-triazoles have been associated with activities such as anti-inflammatory and diuretic agents and as plant grown regulators [3]. Esters of 1,1- cyclopropane dicarboxylic acid are important insecticidal agents [4]. In continuation of our interest in the chemistry of 1,1-cyclopropane dicarboxylic acid, thiadiazole and 1,2,4-triazole derivatives of this acid have been prepared by conventional synthetic techniques.

Molecules 2005, 10 1154 Results and Discussion 1,1-yclopropane dicarboxylic acid was obtained from diethylmalonate and 1,2-dibromoethane. When the acid was treated with thiosemicarbazide and phosphorous oxychloride (cheme 1), 1,1- bis(2-amino-1,3,4-thiadiazol-5-yl) cyclopropane (2) was obtained in good yield. The IR spectrum indicated the presence of a = function (1605 cm -1 ) and the MR spectrum showed a singlet at δ 3.29 ppm due to the 2 protons and a multiplet at 1.08 1.51 ppm for the cyclopropane ring protons. Reaction of the aminothiadiazole 2 with aromatic aldehydes produced new chiff bases 3a-c in high yield (cheme 1, Table 1). Propynylation of 2 with propargyl chloride, followed by reaction with formaldehyde and secondary amines afforded the Mannich bases 5a-c (cheme 1, Table 1). cheme 1 OO OO 1 POl 3, 2 2 2 2 2 ArO Br 2 Ar= =Ar 2 2 3a-c 4 Ar = 6 5, p-l- 6 4, p-o 2-6 4 R 2, O R 2 2 2 2 2 R 2 5a-c R = ( 3 ) 3, piperidine, morpholine

Molecules 2005, 10 1155 Table 1 Properties of 1,1- bis-(1,3,4- thiadiazolyl) cyclopropane derivatives. R 2 R 2 omp. o. R mp 0 Yield % pectral data UV, λmax (EtO) 2 214-217 38 290 3b = 6 4 -l-p 201-204 45 293 3c =- 6 4 O 2 -p 199-201 40 263 4 2 243-246 60 260 5a 2-2 ( 3 ) 2 230-232 48 298 5b 2 2 O 237-298 54 300 IR cm -1 1605 (=), 3165, 3280 ( 2 ), 660 (--) 1630 (=), 2940-2980 (-), 3020 (-Ar), 830 (-l) 1620 (=), 2900-2920 (-), 3025 (-Ar), 1345,1520 (O 2 ) 1620 (=), 3130 (-), 2120 ( ), 3240 ( -), 1180 (-), 760 (--), 1620 (=), 3190 (-), 1220 (-) 1610 (=), 3250 (), 2125 ( ), 650 (- -) 5c 2 2 233-235 50 345 1610 (=), 3250 (-), 1180 (-) All compounds gave satisfactory analysis. On the other hand, oxidative cyclization of the 1,1-bis-cyclopropane dicarboxylic acid thiosemicarbazide 6 with aqueous sodium hydroxide (cheme 2) afforded 1,1-bis(3-thio-4-1,2,4- triazol-5-yl) cyclopropane (7), which exists in two tautomeric forms [5,6], the thiol 7a and the thione 7b, as indicated by the presence of the characteristic - stretching at 2620 cm -1 (7a) or the = stretching at 1220 cm -1 (7b), in addition to the absorption bands at 1615 cm -1 for the = stretching and 3120 cm -1 for - stretch. The MR spectrum of 7 shows two singlets at 3.7 ppm and 3.8 ppm for the - [6] and - [8] protons of the triazole ring, respectively, and a multiplet at 0.9 1.1 ppm for the cyclopropane ring protons [9]. Reaction of 7 with chloroacetic acid yielded 8 which on treatment with thionyl chloride and hydrazine hydrate afforded the acid hydrazide 9. ondensation with aromatic aldehydes in absolute ethanol gave the chiff bases 10a-c. Introduction of a propynylic function by reaction with propargyl chloride in alkaline medium followed by the Mannich reaction with paraformaldehyde and secondary amines gave the Mannich bases 11a-c (cheme 2, Table 2).

Molecules 2005, 10 1156 cheme 2 1 Ol 2, 2 2 2 O O 2 6 ao l 2 OO 1. 2 l 2. R 2, O 7 OO 2 2 OO R 2 2 2 2 2 R 2 8 1. Ol 2 2. 2 4 2 O 11a-c R 2 = piperidine, morpholine, cyclohexylamine 2 O 2 2 O 2 9 ArO Ar=O 2 2 O=Ar 10a-c Ar = p-l- 6 4, p-o 2-6 4, p-br- 6 4 The structures of all derivatives of the thiotriazole 7 were proven on the basis of melting points (mp), thin layer chromatography (TL) and spectral data. The IR spectra of compound 9 exhibited a =O stretching vibration near 1675 cm -1 and, 2 stretching vibrations at 3180 3200 cm -1. The chiff bases 10a-c (Table 2) display in their IR carbonyl and azomethine absorptions near 1680 cm -1 and 1625 cm -1, respectively, in addition to aromatic = at 1600 cm -1 and =- at 3080 cm -1. The formation of the Mannich bases 11 was confirmed by the presence of a weak absorption near 2120 cm -1 for and at 1260-1280 due to - stretching.

Molecules 2005, 10 1157 Table 2 Properties of 1,1- bis (3- thiol -4 1,2,4-triazol- 5 yl) cyclopropanes. R R omp. o. R Mp Yield % pectral data UV, λmax (EtO) 7 270 58 223.5 8 OO- 2 237-39 45 290 9 2 O 2 217-20 48 305.5 10a p-l 6 4 =O 2 203-05 50 297.5 10b p-o 2 6 4 =O 2 209-211 48 308 10c p-br 6 4 =O 2 215-17 46 315 11a 2 2 249-50 48 237 IR cm -1 2860 (-), 3120 (-), 1615 (=), 2620 (-), 1220 (=). 2970, 2910 (-), 3500-3000 (OO), 1630 (=), 1670 (=O), 770 (--). 2990, 2920 (-), 1640 (=O), 1610 (=), 3180 (-), 3200 ( 2 ). 3200 (-), 3080 (-ar), 2890, 2930 (-al), 1600 (=), 1665 (=O), 790 (-l). 3150 (-), 3020 (-ar), 2920 (-al), 1610 (=), 1665 (=O), 1540,1325 (-O 2 ) 3220 (-), 3100 (-ar), 2970 (-al), 1630 (=), 1670 (=O), 650 (-Br). 3150 (-), 2120 (,w), 1605 (=), 1275 (-). 11b O 2 2 256-57 50 302 3200 (-), 2110 (,w), 1610 (=), 1260 (-). 3165 (-), 2115 (,w), 1610 11c ( 6 11 ) 2 2 2 259-60 47 301 (=), 1280 (-). All compounds gave satisfactory analysis.

Molecules 2005, 10 1158 Experimental General Melting points were determined in open capillary tubes on a Gallenkamp melting point apparatus and are uncorrected. The IR spectra were recorded by KBr discs with a Pye-Unicam P3-100 spectrometer. UV spectra were recorded with itachi 2000 spectrophotomer. 1 -MR spectra were recorded on a itachi Perkin- Elmer 60 Mz MR spectrometer in Dl 3 DMO-d 6 with TM as an internal standard. Elemental analyses were done on a arlo- Erba Analyzer type 1106. tarting chemical compounds were obtained from Fluka or Aldrich. haracterization data of the products is given in Tables 1 and 2. Preparation of 1,1-Bis (2-amino-1,3,4-thiadiazol-5-yl) cyclopropane (2). A mixture of 1,1-cyclopropane dicarboxylic acid [10]) (0.01 mole), thiosemicarbazide (0.02 mole) and phosphorous oxychloride (5 ml) was gently refluxed for 30 minutes. After cooling water (10 ml) was added and the reaction mixture was refluxed for four hours and filtered. The solution was neutralized with KO and the precipitate was filtered and recrystallized from ethanol. Preparation of compounds 3a-c. The corresponding aryl aldehyde (0.1 mole) was added to a stirred solution of compound 2 (0.1 mole) in absolute ethanol (30 ml) and the mixture was refluxed for 2 hours. After cooling the mixture was filtered and the solid recrystallized for methanol. Preparation of 1,1- bis(3-aminoprop-2-ynyl-1,3,4 thiadiazol-5-yl) cyclopropane (4). Propargyl bromide (0.02 mole) was added dropwise to a stirred solution of compound 2 (0.01 mole) and triethylamine (0.01 mole) in ethanol (25 ml). The mixture was refluxed for 2 hours then the solvent was evaporated and the product was collected and crystallized from ethanol-water. Preparation of Mannich bases 5a c. To a solution of compound 4 (0.025 mole) in dry dioxane (50 ml) was added paraformaldehyde (0.05 mole), the appropriate secondary amine (0.05 mole) and catalytic amount (0.05 g) of cuprous chloride. The reaction mixture was heated for 2 hours at 90 0. After cooling the mixture was filtered and poured on to ice-water and the precipitite was filtered and crystallized from chloroform. Preparation of 1,1-cyclopropane dicarboxylic acid thiosemicarbazide (6). A mixture of compound 1 (0.01 mole) and thionyl chloride (10 ml) was refluxed gently for 7 hours. Excess thionyl chloride was removed under vaccum to give red-brown oil of the acid chloride

Molecules 2005, 10 1159 which was dissolved in dry benzene (25 ml) and thiosemicarbazide (0.02 mole) was added. The reaction mixture was refluxed for 2-3 hours. The product was filtered and recrystallized from ethanol. Preparation of 1,1-bis(3-thio-1,2,4-triazol-5-yl) cyclopropane (7). A stirring mixture of 6 (0.01 mole) and sodium hydroxide (0.01 mole, as 4% solution) was refluxed for 4 hours. After cooling the solution was decolorized with activated carbon and filtered. The filtrate was acidified with hydrochloric acid and the precipitate was filtered and recrystallized from ethanol water. Preparation of compound 8. To a stirring solution of α chloroacetic acid (0.01 mole ) in 10% sodium hydroxide (10 ml) was added a solution of compound 7 in 10% sodium hydroxide (10 ml).the reaction mixture was refluxed for 3 hours. After cooling the solution was acidified with coc. l and the product was collected and recrystallized from ethanol. Preparation of compound 9. A mixture of compound 8 (0.002 mole) and thionyl chloride (8 ml) was refluxed for 2 hours. Excess thionyl chloride was removed in vacuo and the resulting acid chloride was crystallized from methanol. This was dissolved in pyridine (10 ml) and hydrazine hydrate (2 ml) was added dropwise with cooling. The reaction mixture was stirred overnight at room temperature then it was heated for 2 hours at 80. Excess pyridine was removed in vacuo and product 9 was crystallized from ethanolwater. Preparation of chiff bases 10 a-c. These compounds were prepared following the same procedure used in preparation of compounds 3a c. Preparation of Mannich bases 11a-c. These compounds were prepared by the same procedure used for compounds 5a-c. References and otes 1- Mori, I; Iwasaki, G.; Kimura, Y.; Matsunaga,.; Ogawa, A., akano, T.; Buser, -P.; atano., M.; Tada,.; ayakawa, K. J. Am. hem.oc. 1995, 117, 4411. 2- orst, W.; Marion, T.; Emil, T. East German Pat. Appl. DD 205,868, 1978; [hem. Abstr. 1980, 92, 41963 j]. 3- Elise,. ci. ews 1993, 143, 255. 4- Dekimpe,.; De Buyck, L. Bull. oc.hem. Belg. 1977, 86, 55.

Molecules 2005, 10 1160 5- Becker,.G.O.; Withaner, J.; auder,.; West, G. J. Prakt. hem. 1989, 311, 646. 6- argund, L.V.G.; Redely, G.R..; ariprasad,. Indian J. hem. 1996, 35B, 499. 7- Ewiss,.F.; Bahajap, A.A.; El- herbini, E.A. J. eterocyclic hem. 1986, 23, 1458. 8- Goswami, B..; kataky, J..; Baruah, J.. J. eterocyclic hem. 1984, 21, 1225. 9- Kothari, P.J.; irgh,.p.; Parmer, V.I. tenberg,.. J. eterocyclic hem. 1980, 17, 1393. 10- Prepared according to the method in the literature: zurny, M.R.; emmel, M.F. Org. ynth. 1975, 60, 66. ample availability: Available from the authors 2005 by MDPI (http:www.mdpi.org). Reproduction is permitted for noncommercial purposes