Lecture 8. MOS (Metal Oxide Semiconductor) Structures

Similar documents
EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of MOSFET. MOS Capacitor. Metal-Oxide-Semiconductor (MOS) Capacitor

Thermionic Emission Theory

MOS electrostatic: Quantitative analysis

FIELD EFFECT TRANSISTORS:

MOSFET Models. The basic MOSFET model consist of: We will calculate dc current I D for different applied voltages.

Metal-Semiconductor Interfaces. Metal-Semiconductor contact. Schottky Barrier/Diode. Ohmic Contacts MESFET. UMass Lowell Sanjeev Manohar

MOS: Metal-Oxide-Semiconductor

Lecture contents. Metal-semiconductor contact

Lecture 12: MOS Capacitors, transistors. Context

MOSFET DC Models. In this set of notes we will. summarize MOSFET V th model discussed earlier. obtain BSIM MOSFET V th model

ECE606: Solid State Devices Lecture 22 MOScap Frequency Response MOSFET I-V Characteristics

FIELD-EFFECT TRANSISTORS

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

SURFACE POTENTIAL BEHAVIOR IN ISFET BASED BIO-(CHEMICAL) SENSORS

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

MOS Capacitors ECE 2204

Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE321 Electronics I

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

Lecture 17 Field-Effect Transistors 2

ECE 340 Lecture 39 : MOS Capacitor II

GaN based transistors

4. CMOS Transistor Theory CS755

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture 22 Field-Effect Devices: The MOS Capacitor

55:041 Electronic Circuits

Lecture 2 Thin Film Transistors

Chapter 4 PN Junctions

Lecture 04 Review of MOSFET

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Integrated Circuits & Systems

UT Austin, ECE Department VLSI Design 4. CMOS Transistor Theory

Semiconductor Physics and Devices

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Classification of Solids

Long Channel MOS Transistors

Electrical Characteristics of MOS Devices

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

Designing Information Devices and Systems I Spring 2017 Official Lecture Notes Note 13

Electrical double layer: revisit based on boundary conditions

MOSFET: Introduction

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on March 01, 2018 at 7:00 PM

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Long-channel MOSFET IV Corrections

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

UNIT 4:Capacitors and Dielectric

EE 130 Intro to MS Junctions Week 6 Notes. What is the work function? Energy to excite electron from Fermi level to the vacuum level

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EECS130 Integrated Circuit Devices

EE C245 - ME C218. Fall 2003

Electrical Double Layers: Effects of Asymmetry in Electrolyte Valence on Steric Effects, Dielectric Decrement, and Ion Ion Correlations

Class 05: Device Physics II

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

EE 560 MOS TRANSISTOR THEORY

Example: Amplifier Distortion

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MOS CAPACITOR AND MOSFET

MOS Transistor I-V Characteristics and Parasitics

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 3: CMOS Transistor Theory

The Intrinsic Silicon

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

MOSFET Capacitance Model

Transistors - a primer

Lecture 11: MOS Transistor

2.0 ANALYTICAL MODELS OF THERMAL EXCHANGES IN THE PYRANOMETER

Lecture 010 ECE4430 Review I (12/29/01) Page 010-1

ECE Semiconductor Device and Material Characterization

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

Announcements. EE105 - Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

TEST 2 (PHY 250) Figure Figure P26.21

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 16

region 0 μ 0, ε 0 d/2 μ 1, ε 1 region 1 d/2 region 2 μ 2, ε 2

Semiconductor Physics fall 2012 problems

ECE-305: Fall 2017 MOS Capacitors and Transistors

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

EE 330 Lecture 14. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs

Parameter Analysis of the Low-Power MCML

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

EE5311- Digital IC Design

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Choice of V t and Gate Doping Type

Electronic Devices and Circuit Theory

Dept. of Materials Science and Engineering. Electrical Properties Of Materials

Lecture 6: 2D FET Electrostatics

MOSFET Physics: The Long Channel Approximation

Transcription:

Lecture 8 MOS (Metal Oie Semiconuctor) Structure In thi lecture you will learn: The funamental et of equation governing the behavior of MOS capacitor Accumulation, Flatban, Depletion, an Inverion Regime Small ignal moel of the MOS capacitor MOS (Metal Oie Semiconuctor Fiel Effect Tranitor (FET) MOS FET Source Drain AlGaA InGaA (Quantum Well) GaA (Subtrate) High Electron Mobility FET 1 nm A 173 nm gate length MOS tranitor (INTEL) nm gate length MOS tranitor (INTEL) 1

A -MOS (or MOS) apacitor + Si or Metal metal contact SiO + _ Subtrate (or Bulk) Doping: N Metal contact A MOS apacitor + Si or Metal SiO o Doping: N Aumption: t o 1) The potential in the metal gate i M If the gate i + Si then M p ) The potential eep in the p-si ubtrate i p 3) The oie (SiO ) i inulating (near zero conuctivity; no free electron an hole) an i completely free of any charge 4) There cannot be any volume charge enity inie the metal gate (it i very conuctive). But there can be a urface charge enity on the urface of the metal gate 5) Dielectric contant: 3. 9 o o 11. 7 o

A MOS apacitor in Equilibrium + - SiO Doping: N t o otential lot: B M n Aume: B otential? n B t o M We nee to fin the potential in equilibrium everywhere A MOS apacitor in Equilibrium: Depletion Region Step 1: harge Flow + - SiO Doping: N Tunnel t o Step : Depletion region i create in the ubtrate an a urface or heet charge enity on the metal gate + - SiO + Doping: N t o o Negative urface charge enity (/cm ) oitive epletion charge enity (/cm 3 ) QG o 3

A MOS apacitor in Equilibrium: harge Denitie + - SiO + t o o harge enity plot: Q G o t o o Depletion region charge enity (/cm 3 ) Total charge per unit area in the emiconuctor (/cm ) QB o A MOS apacitor in Equilibrium: Electric Fiel + - SiO + t o Electric fiel in the emiconuctor: E E E o o o Linearly varying t o E o E o 4

Some Electrotatic onier an interface between meia of ifferent ielectric contant: 1 E 1 E Suppoe you know E 1, can you fin E??? Ue the principle: The prouct of the ielectric contant an the normal component of the electric fiel on both ie of an interface are relate a follow: E 1 1 E Q I Interface heet charge enity Note that E 1 i the electric fiel JUST to the left of the interface an E i the electric fiel JUST to right of the interface A MOS apacitor in Equilibrium: Electric Fiel + - SiO + t o Electric fiel in the oie: E o E contant E o o t o E o o o E E E E o o Eo o 5

A MOS apacitor in Equilibrium: otential + - SiO + otential in the emiconuctor: E o o n o t o o n t o o n Start integrating the fiel beginning from the ubtrate (bulk) to fin the potential A MOS apacitor in Equilibrium: otential + - SiO + otential in the oie: E n o o t o o o o o n o n t o o 6

A MOS apacitor in Equilibrium: otential + - SiO + t o o n B t o o M Mut have: Therefore: t o o o n to M o o o o B B M Oie capacitance (per unit area) o o t o n A MOS apacitor in Equilibrium: otential + - SiO + t o o n B M B o S B t o E o o o otential rop in the oie t o o S o otential rop in the emiconuctor E o B M o n o Oie capacitance (per unit area) o o to 7

A Biae MOS apacitor: > + - SiO o + t o o All of the applie bia fall acro the epletion region an the oie B t o o n B B o otential rop in the oie otential rop in the emiconuctor A Biae MOS apacitor: > + - SiO o + t o o All of the applie bia fall acro the epletion region an the oie B t o o n The epletion region hrink an the oie fiel alo ecreae for > o o B E o a o 8

A Biae MOS apacitor: Flatban onition + - SiO o t o When i ufficiently poitive, the epletion region thickne hrink to zero Thi value of i calle the flatban voltage otential in flatban conition: n t o Flatban voltage: B o o B M n A Biae MOS apacitor: Accumulation ( > ) + - SiO o otential: t o harge accumulation (ue to electron) on the emiconuctor urface B n t o harge Denity: Q G o The entire potential rop for > fall acro the oie t o Total charge per unit area in the electron accumulation layer QN o 9

A Biae MOS apacitor: Depletion ( < ) + - SiO o + t o B t o n B o o S The epletion region wien an the oie fiel alo increae for < otential rop in the oie otential rop in the emiconuctor A Biae MOS apacitor: Depletion ( < ) + - SiO o + t o B t o n S n o n o n 1

A Biae MOS apacitor: Hole Denity B t o n S n A i ecreae, S alo ecreae The hole enity in the emiconuctor epen on the potential a: p o q qn q n q n n KT KT KT KT ie nie e Ne Hole enity i the larget right at the urface of the emiconuctor where the potential i the lowet q n p N KT e n A Biae MOS apacitor: Threhol onition t o n B S n q n p N KT e N When i ecreae an the urface potential S reache - n the poitive hole charge enity at the urface become comparable to the poitive charge enity in the epletion region an cannot be ignore The gate voltage at which S equal - n i calle the threhol voltage T : n T n o 11

A Biae MOS apacitor: Inverion ( < T ) + - T SiO o + t o Inverion layer charge (ue to hole) on the emiconuctor urface When the gate voltage i ecreae below T the hole enity right at the urface increae (eponentially with the ecreae in the urface potential S ) Thi urface hole enity i calle the inverion layer (aume to be of zero thickne in thi coure) Q Inverion layer charge enity (/cm ) t o QG Q A Biae MOS apacitor: Inverion ( < T ) t o ma n B T S n B When the gate voltage i ecreae below T the inverion layer charge increae o rapily that the etra applie potential rop entirely acro the oie, an the urface potential S remain cloe to - n onequently, the epletion region thickne (an the epletion region charge) oe not increae when the gate voltage i ecreae below T n T n o S n ma n T ma ma o 1

A Biae NMOS apacitor: Inverion ( < T ) + - T SiO o + Q How to calculate the inverion layer charge Q when < T? Start from: By Gau law: Therefore: Q Q o o o Q E E o t o o T o t o o Q T S o ma a ma ma ma S ma A Biae MOS apacitor: Summary of Different Regime Flatban ( = ): No epletion region in the emiconuctor an no accumulation charge Accumulation ( > ): No epletion region in the emiconuctor but majority carrier accumulation charge on the urface of the emiconuctor Depletion ( T < < ): Depletion region in the emiconuctor but no majority carrier accumulation charge or minority carrier inverion charge on the urface of the emiconuctor Inverion ( < T ): Depletion region in the emiconuctor an minority carrier inverion charge on the urface of the emiconuctor 13

A Biae MOS apacitor: harge Depletion Region harge (/cm ) T Q B Q B QB ma n Q B o o Inverion Layer harge (/cm ) Q T Q o T Q N Q N A Biae MOS apacitor: harge Accumulation Layer harge (/cm ) T Q N QN Q N QN o harge (/cm ) Q G T QG Q QN QB 14

The Small Signal apacitance of a MOS apacitor The mall ignal capacitance (per unit area) of the MOS capacitor i efine a: QG where Q G i the charge enity (unit: /cm ) on the gate (1) Accumulation ( > ): Q G o o v gb o The Small Signal apacitance of a MOS apacitor () Depletion ( T < < ): QG QG Differentiate the equation (erive earlier): o To get: 1 o Define: b v gb o Finally: 1 1 1 o b b 15

The Small Signal apacitance of a MOS apacitor (3) Inverion ( < T ): Q G ma Q Q o T Q o G Q ma oe not change with in inverion v gb o The Small Signal apacitance of a MOS apacitor harge (/cm ) Q G T Q G o Inverion o Accumulation Depletion T 16

A MOS apacitor with a hannel ontact SiO metal contact + + -Si -Si _ B _ Inverion layer Subtrate (or Bulk) Metal contact In the preence of an inverion layer, the aitional contact allow one to irectly change the potential of the inverion layer channel w.r.t. to the bulk (ubtrate) A Biae MOS apacitor: Inverion with B ma ma( ) t o B n S n B S n B We ha ai that the urface potential S remain fie at n when i ecreae below T But with a non-zero B, the urface potential S in inverion can be change to ( n + B ) The new value of the epletion region with i: n n Quetion: How o we now fin the inverion layer charge Q when B i not zero? B ma 17

A Biae NMOS apacitor: Inverion with B + - T SiO o + Q + - B t o ma How to calculate the inverion layer charge Q? Same way a before.. Start from: o S E ot ma a o S ma By Gau law: Therefore: o E Q o o Q Q o o ma ma ma o ma ma A Biae NMOS apacitor: Inverion with B + - T SiO o + Q + - B Q o t o a ma o ma a ma Q o T ma o n B T ma n B o Same a before but now T epen on B 18

MOS apacitor: Effect of B ( < T ) gate + ource rain + - B - + - ource gate rain B < Inverion charge ecreae Depletion region epan gate + ource rain + - B - B > Inverion charge increae Depletion region hrink 19