Research Article Plasma-Based Surface Modification of Polydimethylsiloxane for PDMS-PDMS Molding

Similar documents
Diamond-like-carbon (DLC) master creation for use in soft lithography using the Atomic Force Microscope (AFM)

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2004

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Pattern Transfer- photolithography

Methods. Casting Mold Fabrication. Channel Fabrication. Sample assembly

Nanotechnology Fabrication Methods.

2 Assistant Professor, Department of Chemical and Materials Engineering, University of Kentucky, KY, USA

Supplementary Information

percolating nanotube networks

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis

Wafer Scale Homogeneous Bilayer Graphene Films by. Chemical Vapor Deposition

Proceedings Novel Method for Adhesion between PI-PDMS Using Butyl Rubber for Large Area Flexible Body Patches

Supplementary Materials for

Selective Manipulation of Molecules by Electrostatic Force and Detection of Single Molecules in Aqueous Solution

Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes

Polímeros: Ciência e Tecnologia ISSN: Associação Brasileira de Polímeros Brasil

Supplementary Figure 1: Micromechanical cleavage of graphene on oxygen plasma treated Si/SiO2. Supplementary Figure 2: Comparison of hbn yield.

Supplementary Figure 1 a) Scheme of microfluidic device fabrication by photo and soft lithography,

Supplementary Figure 1 shows overall fabrication process and detailed illustrations are given

Supplementary information for

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

Carbon Nanotube Thin-Films & Nanoparticle Assembly

Positioning a single Metal Organic Framework particle using the magnetic field.

Techniken der Oberflächenphysik (Techniques of Surface Physics)

56.2: Invited Paper: Pixel-Isolated Liquid Crystal Mode for Plastic Liquid Crystal Displays

Fast Bonding of Substrates for the Formation of Microfluidic Channels at Room Temperature

Research Article Effect of the on/off Cycling Modulation Time Ratio of C 2 H 2 /SF 6 Flows on the Formation of Geometrically Controlled Carbon Coils

A. Optimizing the growth conditions of large-scale graphene films

Overview of the main nano-lithography techniques

SUPPLEMENTARY FIGURES

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Supporting Information: PDMS Nanocomposites for Heat Transfer Enhancement in. Microfluidic Platforms

Introduction to Photolithography

Soft Lithography and Materials Properties in MEMS

Photolithography 光刻 Part II: Photoresists

Department of Chemistry, NanoCarbon Center, Houston, Texas 77005, United States, University of Central Florida, Research Parkway,

Top down and bottom up fabrication

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM

Abstract. The principles and applicability of surface structure and hydrophobicity of polymers (PS, PDMS),

Temporary Wafer Bonding - Key Technology for 3D-MEMS Integration

MSN551 LITHOGRAPHY II

PLASMA-POLYMER MODIFICATION OF BASAL PLANE GRAPHITE SURFACES FOR IMPROVED BIOCOMPATIBILITY

ETCHING Chapter 10. Mask. Photoresist

Supporting Information. Direct Growth of Graphene Films on 3D Grating. Structural Quartz Substrates for High-performance. Pressure-Sensitive Sensor

Supplementary Information

ME381 Introduction to MEMS

Supplementary Information. Rapid Stencil Mask Fabrication Enabled One-Step. Polymer-Free Graphene Patterning and Direct

Supporting Information

Three Approaches for Nanopatterning

Repeating monomer of SiO(CH 3 ) units. Polymerization causes cross linking. Visco elastic polymer (Based on n ). Intrinsically hydrophobic.

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Fabrication of complex multilevel microchannels in PDMS by using threedimensional

Reactive Ion Etching (RIE)

Emerging nanopatterning

Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation

A Novel Approach to the Layer Number-Controlled and Grain Size- Controlled Growth of High Quality Graphene for Nanoelectronics

Authors: D.S.Roveri 1, H.H.Bertan 1, M.A.R.Alves 1, J.F.Mologni 2, E.S.Braga 1

Y. C. Lee. Micro-Scale Engineering I Microelectromechanical Systems (MEMS)

Effects of plasma treatment on the precipitation of fluorine-doped silicon oxide

SUPPORTING INFORMATION. Si wire growth. Si wires were grown from Si(111) substrate that had a low miscut angle

Nanostructures Fabrication Methods

E SC 412 Nanotechnology: Materials, Infrastructure, and Safety Wook Jun Nam

Ferroelectric Zinc Oxide Nanowire Embedded Flexible. Sensor for Motion and Temperature Sensing

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

A Multifunctional Pipette

ARGON RF PLASMA TREATMENT OF PET FILMS FOR SILICON FILMS ADHESION IMPROVEMENT

1

Supplementary materials for: Large scale arrays of single layer graphene resonators

Tutorial on Plasma Polymerization Deposition of Functionalized Films

ALIGNMENT ACCURACY IN A MA/BA8 GEN3 USING SUBSTRATE CONFORMAL IMPRINT LITHOGRAPHY (SCIL)

Electronic Supplementary Information. Continuous Flow Microfluidic-MS System for Efficient OBOC Screening

Supporting Information: Poly(dimethylsiloxane) Stamp Coated with a. Low-Surface-Energy, Diffusion-Blocking,

CNPEM Laboratório de Ciência de Superfícies

FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

DQN Positive Photoresist

J. Photopolym. Sci. Technol., Vol. 22, No. 5, Fig. 1. Orthogonal solvents to conventional process media.

Formation and Surface Modification of Nanopatterned Thiol-ene Substrates using

Lecture 18: Microfluidic MEMS, Applications

Supplementary Information Our InGaN/GaN multiple quantum wells (MQWs) based one-dimensional (1D) grating structures

Printing Silver Nanogrids on Glass: A Hands-on Investigation of Transparent Conductive Electrodes

Solutions for Assignment-8

Dry Etching Zheng Yang ERF 3017, MW 5:15-6:00 pm

Table of Content. Mechanical Removing Techniques. Ultrasonic Machining (USM) Sputtering and Focused Ion Beam Milling (FIB)

Supplementary Information. High-Performance, Transparent and Stretchable Electrodes using. Graphene-Metal Nanowire Hybrid Structures

Inorganic compounds that semiconduct tend to have an average of 4 valence electrons, and their conductivity may be increased by doping.

FLEXIBLE FILMS TREATMENT

Bioassay on a Robust and Stretchable Extreme Wetting. Substrate through Vacuum-Based Droplet Manipulation

Particle concentration influences inertial focusing in Multiorifice Flow Fractionation microfluidic devices

Chapter 3 : ULSI Manufacturing Technology - (c) Photolithography

Supplementary Information

Geometry Induced Microparticle Separation in Passive Contraction Expansion Straight Channels

Gold Nanoparticles Floating Gate MISFET for Non-Volatile Memory Applications

Research Article StudyofPbTiO 3 -Based Glass Ceramics Containing SiO 2

Surface Free Energy Effects in Sputter-Deposited WN x Films

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics

OPTIMIZATION OF DIELECTRICS SURFACE PREPARATION FOR VACUUM COATING

Transcription:

International Scholarly Research Network ISRN Polymer Science Volume 212, Article ID 767151, 5 pages doi:1.542/212/767151 Research Article Plasma-Based Surface Modification of Polydimethylsiloxane for PDMS-PDMS Molding S.LoperaandR.D.Mansano Laboratório de Sistemas Integráveis,Escola PolitécnicaUniversityda São Paulo, São Paulo 558-1, SP, Brazil Correspondence should be addressed to S. Lopera, slopera@lsi.usp.br Received 5 January 212; Accepted 6 February 212 Academic Editors: M. Patel and D. Pavel Copyright 212 S. Lopera and R. D. Mansano. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present and compare two processes for plasma-based surface modification of Polydimethylsiloxane (PDMS) to achieve the antisticking behavior needed for PDMS-PDMS molding. The studied processes were oxygen plasma activation for vapor phase silanization and plasma polymerization with tetrafluoromethane/hydrogen mixtures under different processing conditions. We analyzed topography changes of the treated surfaces by atomic force microscopy and contact angle measurements. Plasma treatment were conducted in a parallel plate reactive ion etching reactor at a pressure of 3 mtorr, 3 Watts of RF power and a total flow rate of 3 sccm of a gas mixture. We found for both processes that short, low power, treatments are better to create long-term modifications of the chemistry of the polymer surface while longer processes or thicker films tend to degrade faster with the use leaving rough surfaces with higher adherence to the molded material. 1. Introduction As reviewed by Macdonald and Whitesides [1], PDMS (polydimethylsiloxane) has proven to be a suitable material for microfluidic device fabrication. It is optically transparent and can be molded to reproduce structures down to nanoscale resolution [2, 3], usually by direct casting on photoresist features over silicon wafers. SU8 is the most commonly used photoresist for master fabrication; single- or multilevel SU8 lines and structures have been extendedly used for PDMS microchannel definition, however, reutilization of resist masters is limited due to degradation by thermal stress during the curing process and by demolding forces. Some strategies such as coatings with diamond-like carbon (DLC) and DLC-polymer hybrids can be applied to increase the durability of the molds [4]. In this paper we present an improved method to replace the use of conventional photoresist masters with more durable positive copies in PDMS. Due to its elasticity, flexible masters in PDMS are not affected by thermal stress during the heating-cooling cycles of the curing process and it is easier to achieve a conformal contact between mold and countermold in closed molding configurations for the production of parts with through holes. Similar methods have been presented to mold complex 3D structures with through holes: Lucas et al. in 28 [5] presented the use of flexible molds made with freestanding SU8 layers for double-side molding of PDMS, Jo et al. in 2 [6] used a plastic sheet as countermold for SU8 molds and Janelle et al. in 2 [7] presented the use of slabs of PDMS treated with threetridecafluorotetrahydrooctyl-trichlorosilane as countermolds. Here we explore two plasma processes for surface modification of PDMS to achieve the antisticking behavior needed for PDMS-PDMS molding. For this application, three main characteristics are needed from the plasma treatment: the peeling force required to demold the PDMS parts off the treated molds should be low, the surface roughness of the mold should not be considerably increased, and the antisticking effect should be permanent and stable over the time. 2. Materials and Methods 2.1. Sample Preparation. We prepared PDMS samples using Sylgard 184 from Dow Corning, mixed in 1 : 1 proportion of curing agent to base polymer, degassed in vacuum for

2 ISRN Polymer Science Table 1: Recipes for photolithography (SU8-25). Thickness Spinning Before bake Exp. dose After bake Developing 5 µm 3 RPM 95 15 min 6 mj cm 2 95 5min 5min 3 µm 5 RPM 95 4 hours 36 mj cm 2 95 15 min 3 min 3 min and oven baked at 1 C for 3 minutes after casting over silicon wafers. We prepared also PDMS samples with rough surfaces, by casting on the rear face of a silicon wafer to increase the contact area for adhesion tests. All PDMS pieces were cast with a thickness of approximately 2 mm, cut in 2 cm 2 cm squares and plasma bonded to 1 3 glass slides for easy handling. The samples were rinsed with distilled water, sonicated in isopropyl alcohol for 5 minutes, and rinsed again in distilled water to remove particles prior to the treatments. Contact angle ( ) 12 1 8 6 4 2 Ref 5 min 1 min 15 min Process time 2.2. Fluorinated Plasma Treatments. This treatment consists in a plasma polymerization of fluorinate compounds over the PDMS surface using CF 4 /H 2 mixtures. Two different CF 4 /H 2 proportions were studied: 5% hydrogen and 2% hydrogen with process times of 1, 5, and 1 minutes. Fluorinated plasma treatments were conducted in a parallel plate RIE reactor at a pressure of 3 mtorr, 3 Watts of RF power (13.56 MHz), and a total flow rate of 3 sccm of the desired gas mixture. 2.3. Plasma-Activated Silanization. The second method consists in an oxygen plasma activation of the PDMS surface to promote de incorporation of Hexamethyldisiloxane molecules. PDMS samples were plasma oxidized in a remote plasma reactor to avoid direct bombardment of the surface. This reactor is composed by a 1 quartz tube, 2 cm long, with an oxygen inlet at one end connected to a vacuum chamber containing the samples at the other end. High DC voltage is applied between the ends to produce a glow discharge at 3 mtorr 18 W of DC power for 5 seconds and placed on a hotplate at 1 C with two drops of HMDS, covered with a 6 Petri dish immediately afterward. 2.4. Surface Topography and Adhesion to PDMS. The surface topography of the processed samples was analyzed by atomic force microscopy using a NanoSurf Nanite AFM. We did also contact angle measurements with a simple imaging setup and using the low-bond axisymmetric drop shape analysis (LB- ADSA) script for Image J developed by Stalder et al. [8]. The adhesive forces of the different treated surfaces to the PDMS were qualitatively compared by manual pealing straps of PDMS cured over each sample, ordering form low to high the force required to peal the PDMS apart. The surface interactions with PDMS were also studied by atomic force spectroscopy (AFS), with a contact-mode AFM tip (NanoWorld CNTR-1) coated with PDMS. 2.5. Flexible Molds Fabrication. To illustrate the application of the studied antisticking treatments for the fabrication of flexible PDMS copies of micromolds, we fabricated two level Contact angle ( ) 11 1 9 8 7 6 5 4 3 5% H 2 2% H 2 Ref As treated Rinsed 5 1 2 Hydrogen (%) Figure 1: Contact angle of PDMS samples treated with CF 4 /H 2 under different conditions. SU8 masters onto 3 glass wafers by using high resolution photoplotted sheet as a mask. The first layerwas5µm thick, to define channels and the second layer 3 µm thick for interconnection posts. Table 1 summarizes the lithographic recipes for each layer. The flexible molds are obtained in a two steps process, first we use the SU8/silicon mold to cast a PDMS inverted copy that is then treated with the selected antisticking plasma process and used to cast the positive copy in PDMS that is also plasma treated for further use. 3. Results and Discussion 3.1. Contact Angle Measurements. In a preliminary study we had observed that the contact angle of the PDMS samples to water decreases with the plasma processing time and with the hydrogen percentage in the gas mixture, as shown in Figure 1, but the hydrophobicity of the samples is partially recovered after rinsing with water.

ISRN Polymer Science 3 Contact angle ( ) 115 11 15 1 95 9 85 8 75 7 Ref 1 min 5 min 1 min Process time PDMS 2% H 2 PDMS 5% H 2 Glass 2% H 2 Glass 5% H 2 Figure 2: Contact angle of PDMS and glass samples processed with CF 4 /H 2 plasmas at 3 mtorr 3 W. The hydrophilic behaviour of the treated samples can be explained by three possible factors: an increment in the surface roughness, the polymerization of a less hydrophobic film on the surface, or the production of polar or charged terminations in the PDMS chains. As the surfaces became again hydrophobic after rinsing with water it is plausible that instable polar groups be primarily responsible for the measured low contact angles and this groups are removed by the dipole interactions with the water. The curves in Figure 2 correspond to the contact angles measured on PDMS and glass of the treated samples after rinsing for 1 minutes with IPA and water to remove nonbonded compounds. On glass, the fluorinated plasma treatment has the effect of increasing the contact angle while on PDMS the treatment decreases the contact angle what indicates that the deposited polymer has an intermediate contact angle around 9. The results of both treatment with 5% hydrogen and 2% hydrogen are similar on glass but very dissimilar on the PDMS, this occurs by the depletion of fluorine ions by the etching reactions with the glass that increase locally the relative proportion of hydrogen, getting close to the saturation of polymerization rate observed after 2% of hydrogen. Comparing the evolution of the contact angle of the as treated samples with the process time (Figure 1) and the same for samples after rinsing with IPA (Figure 2), it is evident that the rinsing process degrades somehow the polymerized film, recovering partially the original contact angle value of the original substrate. From Figure 2 it is also noted that thicker films, deposited with 2% hydrogen and longer times, are more affected by the rinsing process and that the adherence of the fluorinated polymer to the glass substrates seems to be stronger than the adherence to PDMS substrates. 3.2. Antisticking Behavior. All the studied treatments conferred to the PDMS in major or minor degree the desired antisticking effect and it was possible to classify from low to high the peeling force required to manually lift with tweezers a 2 µ L drop of PDMS cured on each treated surface. Seven Pull off Jump (nm) Deflection (nm) 676 887 1 1 7 6 5 4 3 2 1 Z axis (µm) 5% 1 min 2% 1 min 5% 1 min HMDS 2% 1 min (a) 5%-1 min 5%-5 min 5%-1 min 2%-1 min 2%-5 min 2%-1 min HMDS Treatment (b) Figure 3: Atomic force spectroscopy curves (a) and AFS pull-off jump (b). samples corresponding to two CF 4 /H 2 proportions for three processing times plus the silanized PDMS sample were then indexed from 1 to 7 according to the qualitative comparison made by two experimenters in three independent repetitions. The atomic force spectrograms of the samples exhibited different pull-off jumps between treatments and also different point to point variability within each sample. In Figure 3 we plotted the different AFS spectrograms. It was expected that the pull-off jump, which is the maximum negative deflection of the AFM cantilever before it loses contact with the sample in the backward part of the AFS cycle, would be proportional to the adhesive force of the PDMS to the treated surface, however when we plotted together the 1 7 index of the peeling force and the AFS data of the seven samples the results were completely inverse; the graph in Figure 4 at the right shows this superimposed data plots where the lower pull off jump corresponded to the higher peeling force and vice versa. This apparent inconsistency could be related to the surface roughness that can affect the effective contact area between the coated tip and the sample; if the surface of a sample is so rough that only a few peaks of its topography 8 7 6 5 4 3 2 1 Peeling force index

4 ISRN Polymer Science Ra: 31.4 nm Ra: 26.2 nm Line fit 575 nm Line fit 754 nm Silanized surface (HMDS) Un-treated PDMS reference Ra: 34.9 nm Line fit 565 nm Ra: 28.9 nm Line fit 754 nm 1 1 min of CF4 + 2% 1 min of CF4 + 2% Figure 4: AFM images of the PDMS samples: untreated PDMS reference, silanized surface, and CF4 + 2% H2 for 1 and 1 minutes. Figure 5: SU8 mold (left), negative copy in PDMS (center), and positive copy (right). touch the coated AFM tip then the measured pull of force will be low, but on the contrary the effective contact area with a PDMS drop cured on it will be higher requiring a bigger force to peel it off. The samples with higher variability that correspond to the lower pull off forces are also the samples with thicker polymerized films (2% hydrogen, 5 and 1 min) that appeared to be degraded during the rinsing, this reaffirms

ISRN Polymer Science 5 that in some places the film could be away giving different measurements from point to point. The AFM images of the surface topography can give more information on this topic. 3.3. Surface Topography. In Figure 4 we present the AFM images of some treated surfaces and the untreated PDMS reference. The three samples processed with 5% hydrogen and the sample for one minute process with 2% hydrogen showed a surface quality similar to the untreated reference, all of them remained optically clear with a slight increase in roughness; only the samples with longer treatments for higher hydrogen concentration produced thicker brown films that led to a rough texture after rinsing. These results are consistent with the previous observations of AFS and contact angle measurements, indicating that thinner films are more stable than thicker films. The HMDS silanization formed a cracked-like texture on the samples but with a low main roughness. Comparing all the studied treatments we found very similar results for 1 minute CF 4 + 2% hydrogen and 1 minutes CF 4 + 5% hydrogen what could be associated with a similar film thickness, both having low peeling forces, low roughness and the higher measured AFS pull-off jump. The silanization process showed also similar AFS values and a low peeling force, however, with a characteristic texture that could be problematic for some applications. proteins, Microelectronic Engineering, vol. 86, no. 4-6, pp. 583 585, 29. [4] M. Okada, M. Iwasa, K. I. Nakamatsu et al., Evaluation of fluorinated diamond like carbon as antisticking layer by scanning probe microscopy, Photopolymer Science and Technology, vol. 21, no. 4, pp. 597 599, 28. [5] N. Lucas, S. Demming, A. Jordan, P. Sichler, and S. Büttgenbach, An improved method for double-sided moulding of PDMS, Micromechanics and Microengineering, vol. 18, no. 7, Article ID 7537, 28. [6]B.H.Jo,L.M.VanLerberghe,K.M.Motsegood,andD.J. Beebe, Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer, Microelectromechanical Systems, vol. 9, no. 1, pp. 76 81, 2. [7]R.A.Janelle,D.T.Chiu,R.J.Jackmanetal., Fabricationof topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping, Analytical Chemistry, vol. 72, no. 14, pp. 3158 3164, 2. [8] A.F.Stalder,T.Melchior,M.Müller, D. Sage, T. Blu, and M. Unser, Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops, Colloids and Surfaces, A, vol. 364, no. 1 3, pp. 72 81, 21. 3.4. PDMS-PMDS Molding. In Figure 5 we present optical and electronic micrographs of a micromold and its negative and positive copies obtained in PDMS with the proposed replication technique. Demolding PDMS parts from this flexible copies was found to be even easier that from the original SU8 Mold. 4. Conclusion All studied treatments achieved the desired antisticking effect on PDMS surfaces, however long plasma treatments increase the surface roughness and create thicker films that are delaminated by rinsing or demolding forces losing its effect. The best results were obtained with 1 min treatment CF 4 + 2% H 2, 1 min treatment CF 4 +5%H 2, and plasma-activated silanization, all of them requiring low peeling forces and having a good surface quality. We demonstrated the applicability of the developed method for the fabrication of flexible copies of SU8 masters for microfluidics. References [1] J. C. McDonald and G. M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices, Accounts of Chemical Research, vol. 35, no. 7, pp. 491 499, 22. [2] J. Lee, S. Park, K. Choi, and G. Kim, Nano-scale patterning using the roll typed UV-nanoimprint lithography tool, Microelectronic Engineering, vol. 85, no. 5-6, pp. 861 865, 28. [3] F. Hamouda, G. Barbillon, S. Held et al., Nanoholes by soft UV nanoimprint lithography applied to study of membrane

Nanotechnology International International Corrosion Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International Nanomaterials Submit your manuscripts at Materials Nanoparticles Nanomaterials Advances in Materials Science and Engineering Nanoscience Scientifica Coatings Crystallography The Scientific World Journal Textiles Ceramics International Biomaterials