PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

Similar documents
PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

Spin Relaxation and NOEs BCMB/CHEM 8190

T 1, T 2, NOE (reminder)

Protein dynamics from NMR Relaxation data

Introduction to Relaxation Theory James Keeler

Timescales of Protein Dynamics

NMR Relaxation and Molecular Dynamics

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

Lecture #6 (The NOE)

NMR journey. Introduction to solution NMR. Alexandre Bonvin. Topics. Why use NMR...? Bijvoet Center for Biomolecular Research

Timescales of Protein Dynamics

Cross Polarization 53 53

NMR Spectroscopy: A Quantum Phenomena

Slow symmetric exchange

PROTEIN NMR SPECTROSCOPY

Quantification of Dynamics in the Solid-State

Introduction to solution NMR. Alexandre Bonvin. The NMR research group. Bijvoet Center for Biomolecular Research

An introduction to Solid State NMR and its Interactions

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

8.2 The Nuclear Overhauser Effect

NMR-spectroscopy of proteins in solution. Peter Schmieder

NMR in Structural Biology

BMB/Bi/Ch 173 Winter 2018

Biophysical Chemistry: NMR Spectroscopy

K ex. Conformational equilibrium. equilibrium K B

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina

THE NUCLEAR OVERHAUSER EFFECT IN STRUCTURAL AND CONFORMATIONAL ANALYSIS

Lecture #6 (The NOE)

Chem8028(1314) - Spin Dynamics: Spin Interactions

Protein Dynamics, Allostery and Function

Two Dimensional (2D) NMR Spectroscopy

Control of Spin Systems

Structurele Biologie NMR

I690/B680 Structural Bioinformatics Spring Protein Structure Determination by NMR Spectroscopy

Spin-spin coupling I Ravinder Reddy

BMB/Bi/Ch 173 Winter 2018

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends

SSSC Discovery Series NMR2 Multidimensional NMR Spectroscopy

NMR Dynamics and Relaxation

Relaxation. Ravinder Reddy

NMR-spectroscopy. I: basics. Peter Schmieder

Introduction solution NMR

Lecture #6 Chemical Exchange

Relaxation, Multi pulse Experiments and 2D NMR

Spectroscopy of Polymers

Carbon 13 NMR NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

The NMR Inverse Imaging Problem

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

Supplementary Information: Dependence of nuclear spin singlet lifetimes on RF spin-locking power

Center for Sustainable Environmental Technologies, Iowa State University

The Physical Basis of the NMR Experiment

Introduction. Introduction. Introduction. Chem Experiment 4 NMR & Mass Spectroscopy and Biomolecular Structure. Fall, 2011

NMR Spectroscopy of Polymers

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Effects of Chemical Exchange on NMR Spectra

Biochemistry 530 NMR Theory and Practice

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13

Magic-Angle Spinning (MAS) drive bearing

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE

Magnetic Resonance Spectroscopy

Measuring Spin-Lattice Relaxation Time

Effects of Chemical Exchange on NMR Spectra

Double-Resonance Experiments

Model-Free Approach to Internal Motions in Proteins

Name: BCMB/CHEM 8190, BIOMOLECULAR NMR FINAL EXAM-5/5/10

Triple Resonance Experiments For Proteins

CE 530 Molecular Simulation

Chemistry 431. Lecture 23

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

Ferdowsi University of Mashhad

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

single-molecule fluorescence resonance energy transfer

Filtered/edited NOESY spectra

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

A Combined Optical and EPR Spectroscopy Study: Azobenzene-Based Biradicals as Reversible Molecular Photoswitches

It is possible to choose the temperature for each experiment by setting a temperature under the Temp pane (under the Standard panel).

4 DQF-COSY, Relayed-COSY, TOCSY Gerd Gemmecker, 1999

Longitudinal-relaxation enhanced fast-pulsing techniques: New tools for biomolecular NMR spectroscopy

Magnetic Nuclei other than 1 H

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Analysis of MD trajectories in GROMACS David van der Spoel

6 NMR Interactions: Zeeman and CSA

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Introduction to NMR Product Operators. C. Griesinger. Max Planck Institute for Biophysical Chemistry. Am Faßberg 11. D Göttingen.

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

NMR Spectroscopy. Guangjin Hou

Spin Interactions. Giuseppe Pileio 24/10/2006

DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin

Biochemistry 530 NMR Theory and Practice

Biophysical Chemistry: NMR Spectroscopy

Lecture #9 Redfield theory of NMR relaxation

Theoretical simulation of nonlinear spectroscopy in the liquid phase La Cour Jansen, Thomas

RAD229: Midterm Exam 2015/2016 October 19, Minutes. Please do not proceed to the next page until the exam begins.

NMR-spectroscopy in solution - an introduction. Peter Schmieder

Transcription:

PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian tumbling and internal motions in proteins Progress in uclear Magnetic Resonance Spectroscopy 38, 1, 197-66.

Correlation function G t 1 t exp 5 τ = c The correlation function above is for the isotropic diffusion of a rigid rotor. The correlation time, τ c, is the time constant for the exponential decay of the function. τ c is approximately the amount of time the molecule takes to rotate 1 radian. otice that short correlation times cause the correlation function to decay rapidly and long times cause the function to decay more slowly. The correlation time depends primarily on molecular size and shape as well as solvent viscosity, temperature, etc

Spectral density function J τ c 5 1+ τ c = The spectral density function, J, is the Fourier transform of the correlation function Just as rapidly relaxing time domain signals give rise to broad lines, short correlation times have a broad spectral density function. This makes sense: molecules that tumble very rapidly can sample a wide range of frequencies. Molecules that tumble slowly and have very long correlation times only sample lower frequencies.

Relaxation mechanisms Dipolar DD Chemical shift anisotropy CSA J-coupling Quadrupolar Chemical exchange Etc.

Dipolar relaxation S d µ hγ I γ S = θ 3 4π r 3cos 1 IS B θ I r is 3cos θ 1 = 5 exp 6D r t Correlation function

Chemical shift anisotropy CSA σ = σ σ If σ 11 σ σ 33 B θ S σ = σ c 11 σ + σ 33 γ σ = θ 3 3cos 1 B S S

There is more to relaxation than T 1 and T We introduced T 1 and T back in the phenomenological Bloch equations. This was back in the good old days when we only had one spin with its x, y, or z orientation to worry about. When we got to spins, we had 15 terms plus one more that was unity. It turns out that each of these terms has different relaxation behavior on its own autorelaxation. Terms can also relax through interactions with each other, like the 1 H 1 H OE cross-relaxation. As shown on the next slide, all of these different types of relaxation can be expressed in terms of spectral density functions.

Some Autorelaxation Rates for an I S two spin system Table adapted from Peng and Wagner J J s J I - s J I J I + s ρl ρt R S S z [e.g. T 1 of S] 3d+c d 6d R S S x [e.g. T of S] d+c/3 3d+c/ d/ 3d 3d R I I z [e.g. T 1 of I] d 3d 6d 1 R I I x [e.g. T of I] d 3d d/ 3d/ 3d 1 R IS I z S z [new!] 3d+c 3d 1 Etc see Peng and Wagner for more d = h γ γ I S 6 4r IS c = ΩS 3 S Ω s and s are the frequency and chemical shift anisotropy CSA for spin S. CSA is the difference in chemical shift when the molecule is oriented along different axes relative to B.

How do we measure relaxation rates? Scheme of a D experiment for heteronuclear relaxation measurement Preparation creation of desirable coherence Delay T of variable length for auto- or crossrelaxation of selected coherence t 1 period labeling of residual coherence by chemical shift of heteronucleus Magnetization transfer to 1 H nucleus 1 H acquisition with broadband decoupling on heteronucleus Delay between scans ot all relaxation rates can be measured in practice It is importatnt to ensure that only the desired relaxation processes occur in the relaxation period. Temperature control is essential rates change approx. 3% per K Typical 8-1 measurements for T 1, T Correct determination of experimental errors is important

Examples of pulse sequences a R 1 or R 1ρ measurement b R measurement c steady-state OE experiment

Analysis of relaxation data 1. Based on a particular model of motion such as oscillations, librations, jumps between several discrete states etc. Uses a correlation function for the specific type of motion. Disadvantage: experimental data do not allow to distinguish between individual models of motion.. Model-free Assumes a certain type of spectral density function characterized by a limited number of parameters. Disadvantage: no information on the specific kind of motion 3. Spectral density mapping Determines the values of the spectral density function at several characteristic frequences, I, S, I ± S. Interpretation qualitative or based on specific models.

Model-free G t 1 t exp 5 τ FT = c J τ c 5 1+ τ c = These functions are correct for rigid spheres and would do a great job describing the tumbling of a rock down a hill if it tumbles isotropically and doesn t break. However, proteins have internal motions, and more realistic models for the correlation and spectral density functions have extra terms to describe internal motion. For example, the popular Lipari-Szabo model free spectral density function is: J S τ c 1+ τ c 1 S τ + 1+ τ 1 1 1 where = + τ τ c τ e τ e is the correlation time for internal motions and S is called the generalized order parameter. S is 1 for a perfectly rigid sphere and the more complicated spectral density function becomes the simpler one above. S is for a completely flexible molecule.

Model-free assumptions 1. Commonly, it is assumed that molecular overall rotation is isotropic.. The conventional methods for characterisation of molecular overall rotation either isotropic or anisotropic a priori imply that intramolecular motions for most of protein 15-1 H groups are fast τ e < 1 ps. 3. Usually the parameters governing relaxation of a 15 nucleus namely, 15 CSA and 15-1 H distance are kept fixed at predetermined values, assumed to be the same for all 15 nuclei in the protein. 4. From the very beginning, the model-free approach assumes that intramolecular motions are independent of molecular overall rotation. 5. Conventional model-free protocols implicitly assume that the protein does not aggregate at concentrations typical for MR relaxation studies.

Model-free spectral density functions Original Lipari-Szabo Two motions on different time scales With anisotropic overal rotation

Model-free analysis of data I. Determination of the parameters of molecular overall rotation 1. From the R /R 1 ratio τ e < 1 ps, τ r > 1ns. As an adjustable parameter in simultaneous fitting of the relaxation data 3. Hydrodynamic calculations II. Selection of a suitable correlation function

Model selection flowchart

Spectral density mapping The goal in protein dynamics is to know the spectral density function. That is difficult. Several different methods have been derived to model the motions of proteins and represent the models as different spectral density functions with different parameters that are fit to experimental data.one approach that is quite straightforward but requires a lot of experimental data has been developed by Peng and Wagner. This is called spectral density mapping, and it essentially involves experimentally measuring the spectral density function at select MR frequencies. This overall approach will be outlined on the next few slides. Regardless of the technique one chooses for dynamics measurements, the next few slides will also show the mathematical relationship between relaxation parameters such as T 1 and T and the J.

{ } 3 6 3 4 6 H H H H Z J J J J r R γ γ + + + + = h R 1 relaxation rate for 15 This looks much more complicated than it really is. Most of what you see are just constants that are known. The important concept is that the relaxation rate depends on the spectral density at different frequencies: * * * H H Z J c J b J a R + + + Where a, b, and c are constants.

Our goal is to know the spectral density function * * * H H Z J c J b J a R + + + Each of the different auto and cross relaxation terms is similar to the one for the T 1 of 15 and is just different combinations of the spectral density functions at different frequencies. Peng and Wagner and others have derived equations relating the different spectral densities to relaxation rates this is just algebra, not physics. For example: + + + = 1 1 1 4 1 3 z I z z IS x z IS x S z S I R S I R S I R S R S R c d J

Mathematical formulation In the original version of spectral density mapping 6 values are measured: R 1I, R 1S, R I, R IzSz, R IzSx, r D dipolar cross-correlation rate The values of Jw a r IH proton-proton OE are determined by solving a set of linear equation A, E expressions characterizing DD and CSA relaxation, consist of physical constants and bond lengths

Reduced spectral density mapping Applicable to large molecules Assumes Jw I º Jw I w S º Jw h The system reduces to three equations

Reduced spectral density mapping Applicable to large molecules Assumes Jw I º Jw I w S º Jw h The system reduces to three equations

Reduced spectral density mapping Applicable to large molecules Assumes Jw I º Jw I w S º Jw h The system reduces to three equations

Reduced spectral density mapping Applicable to large molecules Assumes Jw I º Jw I w S º Jw h The system reduces to three equations

Measured relaxation rates characterize the spectral density function These rates can be measured, and if you have enough spectrometer time at different frequencies, you can directly measure the spectral density at different frequencies just using 1 H and 15. For example, a 11.76 T 5 MHz magnet will allow measurement of the following frequencies: MHz, 5 MHz 15 at 11.76 T, 5 MHz, 45 MHz 1 H 15, 55 MHz 1 H + 15 A 17.6 T 75 MHz magnet will measure: MHz, 75 MHz, 75 MHz, 675 MHz, and 85 MHz.

MD simulations atoms with co-ordinates r i i=1, which interact with each other according to energy potential defined by force-field. The force field includes terms for deformations of the chemical structure bond lengths, bond angles, torsion angles and for long-range interactions van der Waals and electrostatic potential. umerical integration in very short intervals ~1fs.. MD - great resolution in space and time MR reality check Calculation of spectral density function would require very long trajectories hundreds of ns, relaxation parameters not accessible. It is possible to calculate correlation functions and order parameters from the individual snapshots of the trajectory. Order parameters derived from MD come out usually higher than the experimental ones. Motions on fs to ps time scales are characterized best bond lengths, bond angles and their vibrations.