Gamma-Ray Bursts. Peter Mészáros, Pennsylvania State University. SLAC Summer School 2010

Similar documents
High-energy emission from Gamma-Ray Bursts. Frédéric Daigne Institut d Astrophysique de Paris, Université Pierre et Marie Curie

Recent Advances in our Understanding of GRB emission mechanism. Pawan Kumar. Constraints on radiation mechanisms

GRB : Modeling of Multiwavelength Data

Lecture 2 Relativistic Shocks in GRBs 2

Outline. Spectra of Fermi/LAT GRBs? Physical Origins of GeV emission? Summary

High-Energy Emission from GRBs: First Year Highlights from the Fermi Gamma-ray Space Telescope

ON GRB PHYSICS REVEALED BY FERMI/LAT

Acceleration of Particles in Gamma-Ray Bursts

Afterglows Theory Re em Sari - Caltech

Gamma-Ray Burst Afterglow

Theory of the prompt emission of Gamma-Ray Bursts

Physics of Short Gamma-Ray Bursts Explored by CTA and DECIGO/B-DECIGO

News from Fermi LAT on the observation of GRBs at high energies

Gammaray burst spectral evolution in the internal shock model: comparison with the observations

Single- and Two-Component GRB Spectra in the Fermi GBM-LAT Energy Range

(Fermi observations of) High-energy emissions from gamma-ray bursts

Gamma-Ray Bursts : :sts GeV/TeV photon emission and

GRB in the Swift Era and beyond

X-ray & γ-ray. Polarization in Gamma-Ray Bursts. Jonathan Granot. Institute for Advanced Study, Princeton

Can we constrain GRB shock parameters using the Gamma Ray Large Area Space Telescope? Eduardo do Couto e Silva SLAC/KIPAC SABER Workshop Mar 15, 2006

The Fermi Zoo : GRB prompt spectra. Michael S. Briggs (Univ. Alabama in Huntsville) for the Fermi GBM & LAT Teams

The Discovery of Gamma-Ray Bursts

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB Recent Developments and Cosmological Context

Gamma-Ray Bursts in Pulsar Wind Bubbles: Putting the Pieces Together

Radiative processes in GRB (prompt) emission. Asaf Pe er (STScI)

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum

arxiv:astro-ph/ v1 7 Jul 1999

Diversity of Multi-wavelength Behavior of Relativistic Jet in 3C 279 Discovered During the Fermi Era

GRB Spectra and their Evolution: - prompt GRB spectra in the γ-regime

Theories of multiwavelength emission from Gamma-Ray Bursts: Prompt to afterglow

Distribution of Gamma-ray Burst Ejecta Energy with Lorentz Factor

1. GAMMA-RAY BURSTS & 2. FAST RADIO BURSTS

Observing GRB afterglows with SIMBOL-X

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Gamma-Ray Bursts. Felix Aharonian Fest, Barcelona, Peter Mészáros, Pennsylvania State University. Recent results

arxiv: v1 [astro-ph.he] 11 Mar 2015

arxiv:astro-ph/ v1 1 Mar 1999

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Central Engines and Jets of long GRB

arxiv: v1 [astro-ph.he] 27 Jan 2009

High energy neutrino signals from NS-NS mergers

Two recent developments with Gamma Ray Burst Classification. And their implications for GLAST. Eric Charles. Glast Science Lunch Nov.

Cosmic Explosions. Greg Taylor (UNM ) Astro 421

High Energy Astrophysics

Shallow Decay of X-ray Afterglows in Short GRBs: Energy Injection from a Millisecond Magnetar?

Gamma-Ray Bursts and their Afterglows

arxiv:astro-ph/ v2 27 Mar 2000

Exploring Fermi-LAT Extended GeV Emission with Stacking Analysis

GRB emission models and multiwavelength properties

arxiv:astro-ph/ v3 9 Jul 2001

Models for the Spectral Energy Distributions and Variability of Blazars

GW from GRBs Gravitational Radiation from Gamma-Ray Bursts

The 2006 Giant Flare in PKS and Unidentified TeV Sources. Justin Finke Naval Research Laboratory 5 June 2008

Neutrinos from GRB. Péter Mészáros Pennsylvania State University

Rosalba Perna. (University of

The spectacular stellar explosion - GRB A: synchrotron modeling in the wind and the ISM

The Biggest Bangs Since the Big One: New Perspectives on GRBs

High Energy Astrophysics. Gamma-Ray Bursts. and. STFC Introductory Summer School for new research students

Origin of X-rays in blazars

Cosmology with GRBs. Giancarlo Ghirlanda. - Osservatorio di Brera.

Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay)

Variability in GRBs - A Clue

AGILE GRBs: detections and upper limits

Testing an unifying view of Gamma Ray Burst afterglows

Rosalba Perna. (Stony Brook University)

Fermi: Highlights of GeV Gamma-ray Astronomy

arxiv:astro-ph/ v1 2 Feb 1999

Emission Model And GRB Simulations

arxiv:astro-ph/ v1 6 Jun 1996

TEMPORAL DECOMPOSITION STUDIES OF GRB LIGHTCURVES arxiv: v2 [astro-ph.he] 18 Feb 2013 Narayana P. Bhat 1

General outline of my talks

Mikhail V. Medvedev (KU)

Gamma-ray Bursts & SVOM

On The Nature of High Energy Correlations

arxiv:astro-ph/ v1 26 Oct 1998

Electromagne,c Counterparts of Gravita,onal Wave Events

Hydrodynamic Evolution of GRB Afterglow

A Theoretical Model to Explain TeV Gamma-ray and X-ray Correlation in Blazars

News from the Niels Bohr International Academy

* What are Jets? * How do Jets Shine? * Why do Jets Form? * When were Jets Made?

Light Curves and Inner Engines Tsvi Piran HU, Jerusalem

High Energy Emission. Brenda Dingus, LANL HAWC

Implications of GW observations for short GRBs

Expected and unexpected gamma-ray emission from GRBs in light of AGILE and Fermi. Marco Tavani (INAF & University of Rome Tor Vergata)

Broadband observations of GRB A with Fermi, Swift, GROND and MOA

high-z gamma-ray bursts by R. Salvaterra (INAF/IASF-MI)

Gamma-ray Bursts. Chapter 4

arxiv: v3 [astro-ph.he] 29 Jan 2013

Studies on the VHE γ-ray/x-ray correlation in high-synchrotron peak BL Lacs

Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB C

Interpretation of Early Bursts

Lobster X-ray Telescope Science. Julian Osborne

Modelling the Variability of Blazar Jets

Radio Afterglows. What Good are They? Dale A. Frail. National Radio Astronomy Observatory. Gamma Ray Bursts: The Brightest Explosions in the Universe

Early Optical Afterglows of GRBs with 2-m Robotic Telescopes

FUNDAMENTAL PHYSICAL PARAMETERS OF COLLIMATED GAMMA-RAY BURST AFTERGLOWS A. Panaitescu. and P. Kumar

Gamma-Rays from Radio Galaxies: Fermi-LAT

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets

High-Energy Neutrinos from Gamma-Ray Burst Fireballs

Transcription:

Gamma-Ray Bursts Peter Mészáros, Pennsylvania State University SLAC Summer School 2010

GRB: basic numbers Rate: ~ 1/day inside a Hubble radius Distance: 0.1 z 6.3! D ~ 10 28 cm Fluence: ~10-4 -10-7 erg/cm 2 ~ 1 ph/cm 2 (γ-rays!) Energy output: 10 53 (Ω/4π) D 2 28.5 F -5 erg but, jet: (Ω j /4π) ~ 10-2 E γ,tot ~ 10 51 erg E γ,tot ~ L Θ x 10 10 year ~ L gal x 1 year Rate[GRB (γ-obs)] ~10-6 (2π/ Ω) /yr/gal 1/day (z 3) but Rate [GRB (uncollimated)] ~ 10-4 /yr/gal, while Rate [SN (core collapse] ~ 1O -2 /yr/gal, or 10 7 /yr ~ 1/s (z <3) Mészáros Tok06

γ-ray lightcurves in 0.1-2 MeV band, e.g. CGRO BATSE, Swift BAT 3 Mészáros grb-gen06

GRB: standard paradigm Bimodal distribution of t γ duration Short (t g < 2 s) 3d group? Long (t g >2 s) Mészáros grb-gen06

Explosion FIREBALL E γ ~ 10 51 Ω -2 D 2 28.5 F -5 erg R 0 ~ c t 0 ~ 10 7 t -3 cm Huge energy in very small volume τ γγ ~ (E γ /R 3 0m e c 2 )σ T R 0 >> 1 Fireball: e ±,γ,p relativistic gas L γ ~E γ /t 0 >> L Edd expanding (v~c) fireball (Cavallo & Rees, 1978 MN 183:359) Observe E γ > 10 GeV but γγ e ±, degrade 10 GeV 0.5 MeV? Eγ Et >2(m e c 2 ) 2 /(1-cosΘ)~4(m e c 2 ) 2 /Θ 2 Ultrarelativistic flow Γ Θ -1 ~ 10 2 (Fenimore etal 93; Baring & Harding 94) Mészáros, L Aqu05 Ô

Relativistic Outflows Energy-impulse tensor : T ik = w u i u k + p g ik, u i : 4-velocity, g ik = metric, g 11 =g 22 =g 33 =-g 00 =1, others 0; ultra-rel. enthalpy: w = 4p n 4/3 ; w, p, n : in comoving-frame 1-D motion : u i =(γ,u,0,0), where u = Γ (v/c), v = 3-velocity, A= outflow channel cross section : Impulse flux Q=(w u 2 +p) A energy flux L= wu Γ c A particle number flux J= n u A Isentropic flow : L, J constant w Γ /n = constant (relativistic Bernoulli equation); for ultra-rel. equ. of state p w n 4/3, and cross section A r 2 n 1 / r 2 Γ comoving density drops Γ r bulk Lorentz factor initially grows with r. Γ But, eventually saturates, Γ E j /M j c 2 ~ constant r Mészáros grb-gen06

Shock formation Collisionless shocks (rarefied gas) Internal shock waves: where? If two gas shells ejected with Δ Γ = Γ 1 -Γ 2 ~ Γ, starting at time intervals Δt ~t v,, they collide at r is, r is ~ 2 c Δt Γ 2 ~ 2 c t v Γ 2 ~ 1O 12 t -3 Γ 2 2 cm (internal shock) [Alternative picture: magnetic dissipation, reconnection] External shock : merged ejected shells coast out to r es, where they have swept up enough enough external matter to slow down, E=(4p/3)r es 3 n ext m p c 2 Γ 2, r es ~ (3E/4pn ext m p c 2 ) 1/3 Γ -2/3 ~ 3.1O 16 (E 51 /n O ) 1/3 Γ 2-2/3 cm (external shock) Mészáros grb-gen06

Fireball Shock Model of GRBs Several shocks - - also possible cross-shock IC Internal Shock Collisions betw. diff. parts of the flow External Shock Flow decelerating into the surrounding medium Reverse shock Forward shock n,p decouple Photospheric th. radiation GRB Afterglow X O R 10 11 cm Mészáros

Γ Internal & External Shocks in optically thin medium : LONG-TERM BEHAVIOR r c r i r e R ø r Internal shocks (or other, e.g. magnetic dissipation) at radius r i ~10 12 cm γ-rays (burst, t γ ~sec) External shocks at r e ~10 16 cm; progressively decelerate, get weaker and redder in time (Rees & Meszaros 92) Decreasing Doppler boost: roughly, expect radio @ ~1 week, optical @ ~1 day (Paczynski, & Rhoads 93, Katz 94) PREDICTION : Full quantitative theory of: External forward shock spectrum softens in time: X-ray, optical, radio long fading afterglow (t ~ min, hr, day, month) External reverse shock (less relativistic, cooler, denser): Prompt Optical quick fading ( t ~ mins) (Meszaros & Rees 1997 ApJ 476,232) Mészáros grb-gen06

Standard shock γ-ray components : shock Fermi acc. of e - synchrotron and inv.compton E 2 N(E) Or? GeV νf ν Ext.Sh. Sy (reverse) 0pt Sy (forward) TeV γ ν GRB 990123 bright (9 th mag) prompt opt. transient (Akerlof etal 99). 1st 10 min: decay steeper than forw.sh. Interpreted as reverse shock...... But is it? Mészáros

Snapshot Afterglow Fits Simplest case: t cool (γ m )>t exp, where N(γ) γ -p for γ>γ m (i.e. γ c(ool) >γ m ) 3 breaks: ν a(bs), ν m, ν c F ν ν 2 (ν 5/2 ) ; ν<ν a ; ν 1/3 ; ν a <ν<ν m ; ν- (p-1)/2 ; ν m <ν<ν c ν -p/2 ; ν>ν c (Mészáros, Rees & Wijers 98 ApJ 499:301) Mészáros, L Aqu05

Collapsar & SN : a direct link - but always? Core collapse of star w. Mt~30 M sun BH + disk (if fast rot.core) jet (MHD? baryonic? high Γ, + SNR envelope ejecta (always?) 3D hydro simulations (Newtonian SR) show that baryonic jet w. high Γ can be formed/escape SNR: not quite seen numerically yet (but: several convincing observations, e.g. late l.c. hump + reddening; and.. Direct observational (spectroscopic) detections of GRB/ccSN Collapsar & SN ANIMATION Credit: Derek Fox & NASA Mészáros, L Aqu05

Collapsar & ccsn : GRB 030329 - SN 2003dh & others 2 nd Nearest unequivocal cosmological GRB: z=0.17 GRB-SN association: strong Fluence:10-4 erg cm -2, among highest in BATSE, but t γ ~30s, nearby; E g,iso ~10 50.5 erg: ~typical, E SN2003dh,iso ~10 52.3 erg ~ E SN1998bw,iso («grb980425) v sn,ej ~0.1c ( hypernova ) GRB-SN simultaneous? at most: < 2 days off-set (from opt. lightcurve) ( i.e. not a supra-nova ) But: might be 2-stage (<2 day delay) *- NS-BH collapse? ν predictions may test this! Some others: GRB 031203/SN2003lw; - GRB 060218/SN2006aj;... Mészáros, L Aqu05

Light curve break: Jet Edge Effects Monochromatic break in light curve time power law behavior expect Γ t -3/8, as long as ϑ light cone ~Γ -1 < ϑ jet, (spherical approx is valid) see jet edge at Γ ~ ϑ jet -1 Before edge, F ν (r/γ)2.i ν After edge, F ν (r ϑ jet ) 2.I ν, F ν steeper by Γ 2 t -3/4 After edge, also side exp. further steepen F ν t -p Mészáros, L Aqu05

Jet Collimation & Energetics Frail et al 01 Jet angle inv. corr. w. L γ(iso) L γ(corr) ~ const. Collim. corr.: (4π/2ΔΩ j ) ~ 10-2 E total = E γ +E kin ~ const. Berger etal 03 ( quasi-standard candle? ) Mészáros, L Aqu05

Amati: Epk Eiso 1/2 Ghirlanda: E pk E j 0.7 Mészáros, L Aqu05

BAT: Energy Range: 15-150kev FoV: 2.0 sr Burst Detection Rate: 100 bursts/yr SWIFT Three instruments Gamma-ray, X-ray and optical/uv Slew time: 20-70 s! >95% of triggers yield XRT det >50% triggers yield UVOT det. XRT: Energy Range: 0.2-10 kev Mission Operations Center: @ PSU (Bristol Res. Park) UVOT: Wavelength Range: 170-650nm Launched Nov 04 Mészáros, L Aqu05

New features seen by Swift : A Generic X-ray Lightcurve ~ -3 new old ( 1 min t hours ) ~ -0.5 ~ - 1.3 10 5 10 6 s 10 2 10 3 s 10 4 10 5 s ~ -2 BUT: not all features in all bursts Mészáros grb-gen06

Short Bursts 050724 050509b - Hosts: E, Irr, SFR (compat. W. NS merg, but: some SGR, other?) - Redshift : < 0.1 to ~ 0.7 - XR, OT, RT: yes (mostly) - XR l.c.: similar to long bursts? (XR bumps too- late engine?) 050709b Mészáros grb-gen06

Paradigm seems compatible with hosts, and (for Kerr BH-NS) some simulations suggest extended activity & flares Short burst paradigm: NS-NS or NS-BH merger BH + accretion simulation Laguna, Rasio 06; ( Preliminary ) Mészáros grb-gen06

A burning issue: Jet Structure/Beam? z=0.937 GRB 080319B A prompt naked eye optical GRB Racusin et al, 08 Nature 455:183 γ, opt prompt l.c. appear similar same emission region, e.g. internal shock; but rad. mechanism? Interpret prompt as: i) optical: synchrotron ii) MeV: 1 st ord. SSC and iii) predict 2nd order IC @ ~100 GeV (there are also differing opinions) Mészáros

080319b O/UV XR GRB 080318B Mészáros Hei08

GRB 080319B WJ Afterglow Prompt NJ Mészáros

080319B X-Ray 2-jet fit FS-NJ FS-WJ Mészáros Hei08

080319B optical 2-jet fit RS-WJ FS-WJ Mészáros Hei08

Also on Fermi : GBM (~BATSE range) ; 12 NaI: 10keV-3 MeV; 2 BGO: 150 kev-30 MeV Fermi Launched June 11 2008 LAT: Pair-conv.modules + calorimeter 20 MeV-300 GeV, ΔE/E~10%@1 GeV FoV = 2.5 sr (2xEgret), ang.res. θ~30-5 (10GeV) Sensit. ~2.10-9 ph/cm 2 /s (2 yr; > 50xEgret) GBM: FoV 4π, 10keV-30MeV 2.5 ton, 518 W det ~300 GRB/yr (GBM); simult. w. Swift : 30/yr; LAT: 1-2/month

GRB 080916C Spectrum : simple (~) Band fits (joint GBM/LAT) for all the different time intervals Soft-to-hard, to sort-of-softpeak-but-hardslope afterglow No evidence for 2nd component Mészáros

BUT: GRB 090902B

Plethora of Models Radiative e ± ext. shock (Ghisellini et al) Unmag. adiab. ext. shock (Kumar & Barniol) Critique thereof (Piran & Nakar) Klein-Nishina IC ext. shock (Wang, He,..) Structured adiab. ext. shock (Corsi et al) Cocoon int. shock upscattering (Toma et al) Photosp. int. shock upscattering (Toma et al) Critique phot & magn. outflow (Zhang, Pe er) Hadronic models (Razzaque et al, Asano et al)

Radiative ext. shock model Ghisellini et al, 0910.2459 GeV light curves roughly FE ~ t -1.5 for most LAT obs. Spectrum roughly FE ~ E -1, not strongly evolving Argue it is external shock, with L~ t -10/7 as expected for `radiative f balls Γ~r -3 ~t -3/7 To make radiative, need `enrich ISM with e ± Argue pair-dominated f ball obtained from backscatt. of E>0.5 MeV photons by ext. medium, cascade External shock (afterglow) delay: explain GeV from MeV delay (MeV prompt is something else (?)) - Problem: r 10 16 cm needed, where n± np (e.g. 01 ApJ 554,660)

ES Sy shock model critique Piran-Nakar, 1003.5919 Late photons (E >10 GeV, t > 100 s) cannot arise from ES Synchrotron (from general accel + sy constraints) must be process few mjy IR flux from RS quench GeV emiss. (by IC), unless B is amplified in shock If no amplification need Bext 100 μg (adiabatic; (unless next very low, n<10-6 ) - or B higher for radiative If ES Sy model is true, no late >10 GeV phot (t>100 s), and no simult.. < mjy IR flux should be observed -- Other recent ES Sy critique: Zhuo Li, 1004.0791, argue need 5n0 5/8 mg <Bu <10 2 n0 3/8 mg upstr. preamplification

KN adiabatic ES model Wang, He et al, 0911.4189 (also He et al in prep.) KN effects influence IC emission through Y parameter Calc. Y( Y( strong) weak Y( GeV light curve steeper than simple t -1.2 adiab. decay Early steep LAT decay (SY modified by SSC w. decr. KN), followed by flatter decay (SY w/o SSC) Argue Kumar s late X not steep enough & early LAT too flat, while KN can make LC in LAT & X steeper, as seen

A Cocoon + IS Upscattering model of GRB lags, for GRB 080916C Toma, Wu & Mészáros, ApJ 09, 707:1404 cocoon Int. Shock Assume jet emits synchrotron in optical, and 1st ord SSC is in MeV Cocoon emits soft XR, jet upscatters this to ~0.3 GeV; time lag ~3s Mészáros

Cocoon + IS Upscattering model Photon time lags photon arrival time in different energy bands GeV band: delayed 2-3 s, due to geometry (source photons come from high latitude cocoon) Mészáros

Cocoon + jet IS upscatt Pulse b coc 1st SSC ups-coc 2nd SSC L55=1.1, Γ3=0.93, Δtj=2.3 s, γm=400, γc=390, τt=3.5x10-4,, εb=10-5, εe=0.4 Data: courtesy of Fermi GBM/LAT coll. Mészáros

Photosphere + IS model Toma, Wu, Mészáros, arx:1002.2634!"#$#%&"'(')*+,)-+$'(+*.)%"#/0)#1)$"')234)5'$ E-('F*..)F*%'!"#$#%&"'(' G+$'(+*.)%"#/0 HI$'(+*.)%"#/0!"#$#%&"'(-/ ( * 678 9<77 )/: @,'&'+,-+A)#+) B"'$"'()$"'(')-%) %$'..*()'+C'.#&'D ( &" 678 7><7? )/: ( - 678 7;<7= )/: Q! %L+/"(#$(#+ (,'/ 678 79 )/: Photosphere: prompt, variable MeV IS occur at r 10 15 cm (high Γ) : Sy=XR, IC(UP)=GeV "')&"#$#%&"'(-/)':-%%-#+)/*+)+*$K(*..L)&(#C-,')*)"-A")γ<(*L)'11-/

Phot-IS model, cont.!"#$%&'()$&%$"&*+",-)'),+#$(")*.%/,0"(()1%((+,+%2!0")"("1*&%2,)+2)*0")+2*"&2'(),0%13)%4)*.%)5+6"2),0"((,)1'2)7$,1'**"&) *0"+&)%.2)$0%*%,$0"&+1)"#+,,+%28 90%*%,$0"&+1)$0%*%2,).0+10) 1'2)+2*"&'1*).+*0)*0")+2*"&2'(),0%13)"("1*&%2, "!#$%&)"44+1+"2*),1'**"&+25)&"5+#" :!0")1',")%4)#!'!71 > )+,)+21(7;";8< '!()*+,-!.*/01234!35!16-!)6313,)6-/27!-82,,2349!'!:;:<=:;<!,!0+,)3+2"#'*+1);"('=)1%7(;)">$('+2)*0")%?,"&6";)0+50/"2"&5=);"('=,)%4)!!,0%&*)@AB,8)C%&)(%25)@AB,D).").+(()$&%$%,")'(*"&2'*+6")">$('2'*+%28

Phot-IS model, cont.!"#$%&$'%()*+,-"./(0#"(-1+(1231(&$"4#'(5#$%(,$)+ 612)(023."+(%#+)('#-(-$7+(2'-#($,,#.'-(-1+()+,#'%$"4(+/2))2#'(&4( -1+(+8+9(*$2")(,"+$-+%(&4(-1+(12319+'+"34($&)#"*-2#'(:$'%(-1+(,$),$%+(*"#,+));<(=12,1(,#.5%(/$7+(-1+(>?<()4',1"#-"#'<($'%( @@A(+/2))2#'($**+$"($)($(&"#$%(,#/*#'+'-B(6#(%+"2C+($(/#"+( "+$52)2-,()*+,-"./(=#.5%("+D.2"+('./+"2,$5()2/.5$-2#')(527+(+B3B<(

Phot-IS model, cont.!"#$%&'(#%$)"#)*'&'+,%,&$)-"&).($%(#/%0)1&(23%)45),+($$("# 6"7)1'&8"#)9"'.)&,2("#) :*3"%"$*3,&(/)."+(#'#%; A 6"7)γ<&'8),--(/(,#/8)&,2("#) :$8#/3&"%&"#<==!)."+(#'#%; B A: Phot., UP merged (080916C) B: Phot.. UP distinct (090902B) 53"%"$*3,&(/)F)45)."+(#'#% >).($%(#/%0)1&(23%)45),+($$("#).",$)#"%)#,,.)')$%&"#2)-(#,)%?#(#2)"-)%3,) *38$(/'9)*'&'+,%,&$0)1?%)%3,)'**&"*&('%,)*'&'+,%,&)&'#2,$)'&,)9(+(%,.0)! 73(/3)($)/"#$($%,#%)7(%3)%3,)-'/%)%3'%)#"%)'99)%3,)6>@)ABC$)3'D,)').($%(#/%)! 3(23<,#,&28)/"+*"#,#%E

Proton Sy model: 080916C Razzaque, Dermer, Finke, arxiv:0908.0513 GBM range: produced by primary e - sy (dark line, 1st pulse) LAT range: p + sy (2nd pulse,color curves), moving down in energy and up in flux with incr. time 2nd gen tn e - sy comp. (from γγ) appears in KeV to MeV range Mészáros

GRB 090510 Fermi LAT/GBM identified SHORT burst Shows (sim. to long bursts) time LAG between soft 1st pulse and hard 2nd pulse LIV limit even more severe than in GRB 080916C - in fact, most severe limit to date! Shows an EXTRA spectral component, besides usual Band component (first clear!) Mészáros

GRB 090510 PRELIMINARY Short burst LAT/GBM, shows lags Abdo, et al. 09 (LAT/GBM coll.) Nature, 462:331 Spectrum: clear 2nd comp (5σ) (ApJ, subm.) Mészáros

Hadronic model of extra comp: ε!"ε#$%&'()*+, )-. 34 5C 34 5D GRB 090510 0 1 )0 γ 234 53 <8=>$?:+@> 0 1 )0 γ 234 5A ε 53>B Asano, Guierec, Mészáros, 09 ApJL, 705:L191 Secondaries from photomeson cascades (but: need Lp,iso~10 55 erg/s!) ε ν & ν 'ε ν (!"#)*+,-. +/% 34 5B 678*9':;':8 34 5E 34 C 34 D 34 B 34 E 34 F 34 G 34 34 ε$%&/. Secondary Secondary photons neutrinos (not detectable, for this burst) [Other hadron model in pep: 090902B, Asano, Inoue, Mészáros, 10] >? 4A >? 4B >? 4C 012345#,67 869)!:6/,65# 892345#,67 8)2;23!<73,=)2;)23 >? >@ >? >A >? >B >? >C >? >D ε ν!"#$% Mészáros

General issues about prompt & high energy emission Radiation mechanism? Electron distribution? Role of turbulence? Poynting - how much?...

Relativistic turbulent model Narayan-Kumar 09, MN 394:L117, K-N 09, MN 395:472; Lazar et al 09, ApJ 695:L10 Objections to IS model (unchanged since ~1999): i) fast cool spectrum Fν~ν -1/2 ; ii) Acell. all e- νpk below MeV; iii) Low rad. efficiency; Propose: relativistic eddys of γt in frame of bulk Γ Shock radius R, shell size r~r/γ in shell frame Max. size of eddy in eddy frame : re ~r/γt ~R/Γ γt Expect eddys to move ballistically for re, collide w. another eddy and change directions, etc., γt times

Relat. Turb., cont. Eddy changes directions γt times, cum. change ~radian over its lifetime Eddy visible when its light cone intersects observer LOS Calculate no. of eddies, conclude have: tburst~r/γ 2 c, tvar~r/γ 2 γt 2 c, and npulse~γt 2, Model L.C. Possible problem : after each causal time (change direction) would also shock thermalize, γt unity, after only a few changes of direction (instead of γt changes); Can isotropic turbulence survive as relativistic for any time? (e.g. Zhang, MacFadyen, Wang 2009, ApJ 692:L40)

ICMART model (IC MAgnetic Reconnection Transient) - Zhang, Yan, 10 Int. coll. w. 1 σ 100, where σ=b 2 /4πρ c 2 (MHD) Magn. reconn. in intern. shock (aided by turbulence) Accel e - : direct (recon.) or stochast. (turb.) rad: SY Need reconn. over λpar 10 4 cm lengths, envisage blobs w. same directions spiral but staggered, have regions of Bperp turb. resist. reconn. (early colls. distort B, at large r much distort., recon)

ICMART model, cont.

ICMART model, cont. Reconnect at r 10 15 cm, there σf 1, Y 1, no IC ne,p ~1/(1+σi) << ne (bar. models) weak photo. np also << than baryon model, no hadr. comp. E pk drops during pulse, hard to soft evol. Reverse shock possible, at late stage σf ~1. Two variabilities: 1) Centr. eng., ii) Recon./turb. Solve: i) low effic.; ii) fast coolg sp. ; iii) electron excess; iv) no bright photosph. (need σ <3x10 3 ) (Other recent MHD model: Granot et al arxiv:1004.0959 - dynamics mainly)

Pop. III GRBs? Mészáros & Rees, 2010, ApJ 715:967 z~20 pop.iii stars 300-1000 M collapsar Accr. too cool for ν-cool BZ, Poynting jet L~10 52 β1-1 R12-3/2 M3 3/2 erg, tac~10 5 (1+z/20) s If mostly B,e± pair annih. photosphere: Ean ob ~ 50 kev (20/1+z) peak + PL (IC) External shock (indep. of ext. density): Esy ob ~2.5 kev(20/1+z), Essc ob ~75 GeV (20/1+z) Flux : F~10-7 erg cm -2 s -1 η-1ω3-1 β1-1 R12-3/2 M3 3/2

Pop. III GRBs: afterglow t~ 1 day t=1 day Toma, Sakamoto & Mészáros, (2010, in prep.) [A case with no internal pair formation, only EBL] νfν 10-9 εe-1 ta5-1 dl,20-2 erg cm -2 s -1 Detectable only with image trigger (v. gradual)

One burning issue with high-z: GRB 090423, z=8.2, T90=13 s (1.4 s in RF) GRB 080913, z=6.7, T90=8 s (<1 s in RF) Both appear short in RF, yet they are difficult to explain with compact merger at that z; likelier due to massive star collapse In disagreement with statistics at low z Are high z GRB progenitors different, and in what respect? Mészáros, grb08

Prospects & Perspectives Swift and Fermi have greatly expanded and deepened our probing into the GRB physics Jet structure is essential, and being probed; also the role and existence/absence of reverse shocks Prompt emission mechanisms are being challenged: new factors may play role - pairs, hadrons, magnetic fields, photospheres, turbulence, reconnection,... Debate whether magnetic fields play larger role than previously assumed - quantitative magnetic models remain sketchy; so do turbulent/reconnection models. They warrant continued attention, together with pair, photosphere, cocoon, leptonic and hadronic models

back-up slides Mészáros

Other recent theoretical papers (won t have time to discuss, sorry) Acceleration of high-σ relativistic flow: Granot et al, arxiv:1004.0959 Dynamics of strongly magn. ejecta in GRB: Lyutikov, arxiv:1004.2429 Accel. of UHECR in blazars & GRB: Dermer, Razzaque, preprint Leptonic & hadronic model GRB 090510, Razzaque et al, preprint Ruffini, Izzo, et al, 2010, GRB080916C & 090902B (see talk later) Very High LF models (low+high baryon): Ioka, 2010, arxiv:1006.3073 Pe er, et al, 2010, phot. thermal+non-thermal, arxiv:1007.2228

ES shock model: 090510 Corsi, Guetta, Piro, arxiv:0911.4453 ES: fit LAT, X, O, Γn~10 4, Eiso,n~4x10 53, εe~3x10-3, p~2.3, n~10-6, θj,n~0.12 o IS: fit GBM, BAT, Γw~300, Eiso,w~1.7x10 53, εe~3x10-3, p~2.7, θj,w~0.64 o Or, another IS + ES model: De Pasquale et al 09, next slide

IS-ES shock model: 090510 De Pasquale + Fermi/Swift team, 2010, ApJ 709:146 Early LAT, XRT due to IS, and O rise could be due to onset of simple FS Or, FS may produce full spectrum from O thru GeV, but temporal behavior structured jet

Photosp. critique: mag. outflow? Zhang & Pe er, 09, ApJ 700:L65 Argue (based on ra~ctvar and assuming 080916c Band is ES Sy) that phot. radius rph is too low (below τγγ~1), and Tph too low to be MeV; also object to thermal spectrum Hence conclude outflow probably Poynting, or at least much more baryon-poor than usual baryonic fireball However, assumed traditional rph and its Tph; this is different, if include additional e ± and use more recent numerical simulations of jet/phot/cocoon, e.g.morsony 09. The latter was used in the Toma et al phot+is model, where Tph ~ MeV (i.e. GBM), without invoking Poynting, and IS-UP provides LAT, either as Band or Band+PL However: latest Pe er et al (arxiv.1007.2228) likes phot!