SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

Similar documents
Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

arxiv:math/ v1 [math.fa] 1 Feb 1994

Extension of Hardy Inequality on Weighted Sequence Spaces

Hadamard matrices from the Multiplication Table of the Finite Fields

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

Types Ideals on IS-Algebras

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

Moment Generating Function

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

Linear Time Invariant Systems

Reinforcement Learning

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

1 Notes on Little s Law (l = λw)

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook):

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Positive and negative solutions of a boundary value problem for a

Supplement: Gauss-Jordan Reduction

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

CHAPTER 2 Quadratic diophantine equations with two unknowns

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K)

Extremal graph theory II: K t and K t,t

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

The Inverse of Power Series and the Partial Bell Polynomials

S n. = n. Sum of first n terms of an A. P is

The analysis of the method on the one variable function s limit Ke Wu

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

Fractional Fourier Series with Applications

STK4080/9080 Survival and event history analysis

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

Comparison between Fourier and Corrected Fourier Series Methods

Ruled surfaces are one of the most important topics of differential geometry. The

Approximately Inner Two-parameter C0

MODERN CONTROL SYSTEMS

Lecture 15 First Properties of the Brownian Motion

( a n ) converges or diverges.

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Observations on the Non-homogeneous Quintic Equation with Four Unknowns

Fermat Numbers in Multinomial Coefficients

Math 2414 Homework Set 7 Solutions 10 Points

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

On Absolute Indexed Riesz Summability of Orthogonal Series

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems

graph of unit step function t

Prakash Chandra Rautaray 1, Ellipse 2

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved.

Basic Results in Functional Analysis

Suggested Solutions to Assignment 1 (REQUIRED)

S.E. Sem. III [EXTC] Applied Mathematics - III

Notes 03 largely plagiarized by %khc

Chapter #3 EEE Subsea Control and Communication Systems

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

An arithmetic interpretation of generalized Li s criterion

Forced Oscillation of Nonlinear Impulsive Hyperbolic Partial Differential Equation with Several Delays

Chapter 2 Infinite Series Page 1 of 9

Fourier series representations of the logarithms of the Euler gamma function and the Barnes multiple gamma functions. Donal F.

Department of Mathematical and Statistical Sciences University of Alberta

EECE 301 Signals & Systems Prof. Mark Fowler

Actuarial Society of India

Solutions to Problems 3, Level 4

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r

Review Exercises for Chapter 9

On Almost Increasing Sequences For Generalized Absolute Summability

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Contraction Mapping Principle Approach to Differential Equations

Computable Analysis of the Solution of the Nonlinear Kawahara Equation

Math 6710, Fall 2016 Final Exam Solutions

ECE 350 Matlab-Based Project #3

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

L-functions and Class Numbers

On The Eneström-Kakeya Theorem

POWER SERIES R. E. SHOWALTER

N! AND THE GAMMA FUNCTION

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Chapter 7. , and is unknown and n 30 then X ~ t n

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

LIMITS OF FUNCTIONS (I)

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

Integration and Differentiation

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

Boundary Value Problems of Conformable. Fractional Differential Equation with Impulses

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Dynamic h-index: the Hirsch index in function of time

Degree of Approximation of Conjugate of Signals (Functions) by Lower Triangular Matrix Operator

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

An Extension of Hermite Polynomials

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Transcription:

VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY K. Soh Reddy, V. Kvih d V. Lkhmi Nry Vrdhm College of Egieerig, Shmhbd, Hyderbd, Adhr Prdeh, Idi E-Mil: ureddyk@gmil.com ABSTRACT Thi ricle commece wih defiiio of low icreig fucio d move o o deliee few properie of low icreig fucio. Beide, everl pplicio i ome problem of umber heory uig he heory of low icreig fucio re lo preeed o how how ueful hee fucio prove i olvig comple problem. Keyword: low icreig fucio, ympoiclly equivle, equece of poiive ieger.. INTRODUCTION Slow icreig fucio re defied follow:.. Defiiio Le f :, ) ( 0, ) be coiuouly differeible fucio uch h f > 0 d lim f. The f i id o be low f icreig fucio (.i.f. i hor) if lim 0 f Wrie F { f f } : i.i.f.... Emple (i) f log, > i.i.f. Noe h lim f lim log d f, > d f i coiuou f lim lim 0 f log (ii) f loglog, > e i lo.i.f.. SOME PROPERTIES.. Theorem Le f, g F d le > 0, c > 0 be wo co he we hve (i) f + c (ii) f c (iii) cf (iv) fg (v) f (vi) f ο g (vii) log f (viii) f + g ll lie i F. Give h f, g F d > 0, c > 0 be co. of (i), (ii), (iii), d (iv) follow he defiiio. (v) Le h f Noe h lim h lim f, d f f > 0, d i coiuou f f lim h () () () () lim Hece h f F (vi) Le h fοg ieh. f( g) f lim 0. f Noe h lim h lim f( g ), d () f (()) g g () > 0, d i coiuou f ( g) g g f ( g) g lim lim lim 0. h f( g ) f( g ) g Hece h fο g F (vii) Le h log f Noe h lim h lim log f, d f > 0, d i coiuou f f f f lim lim lim 0. h log f f log f Hece h log f F (viii) Le h f + g For ufficiely lrge, we hve 0 0 g g f + g g f f d f + g f 480

VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com By ddig he bove, we ge lim 0 Hece h f + g F h () f g 0 lim lim + lim 0 h () f g.. Theorem Le f, g F. Defie h f ( ) d k f( g ) for ech, Give h f, g F. Defie h f ( ) d k f( g ) for ech. Le h () f( ) Noe h lim h lim f( ), d f ( ) > 0, d i coiuou f ( ) f ( ) lim lim lim 0 h f( ) f( ) Hece h f( ) i.i.f. Le k f( g ) Noe h lim k lim f( g ), d k f ( g) g + g > 0 d k i coiuou f ( g) g + g lim lim h f( g ) g f ( g) g f ( g) g lim + lim 0 f( g ) f( g ) g Therefore k f( g ) i.i.f. Hece hk, F.3. Theorem Le f, g F be uch h f d f f lim d 0. g d > g The F. g Give h f d f f, g F,lim d 0 g d > g f ( g ) f( g ) Le f h d g g f g f g g f g lim lim lim lim 0 h f f g g Hece f F g.4. Theorem Le h :, ) ( 0, ) be coiuouly differeible fucio uch h > 0 d lim h (i) Defie g h(log ). The g F lim 0 h (ii) Defie e. The k F lim 0 h k Give h > 0 d lim h (log ) (i) Defie g h(log ) he g Suppoe g F he g ifie g (log ) i.e. lim 0 h(log ) lim 0 g (log ) lim 0 h(log ) () Pu log o h lim 0 h () i.e. lim 0. h Coverely uppoe lim 0 h Pu e o h log d (log ) lim lim 0 h h(log ) g () (log ) Now lim lim lim 0. g () h(log ) h Hece g F (ii) Like proof of (i).5. Theorem If f F he log f lim 0. log 48

VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com Give h f F, f log f f lim lim log f ' log f lim 0 i.e. lim 0 f log (byl Hopil rule)..6. Theorem f F if d oly if o ech > 0 here d f ei uch h 0, d < > We hve d f f f f f + d f f ' Suppoe f F he lim 0 f i.e. For ech > 0 here ei uch h > Ad hold. f ' d 0 <, > 0, d < > To prove he covere ume h he codiio Le > 0 be give. The here ei uch h > d f We hve, by hypohei 0 d < hi implie h f ' 0 <, > f f ie.. 0 f Therefore f F..7. Theorem If f F he f ' lim 0. f lim 0, for ll > 0 For y wih 0 < <, we ge by Theorem.6, d f 0, d < Thi implie h Hece for ll > for ome f i decreig for > f bouded bove, y, by M Th i, here ei M > 0 uch h f 0 < < M, > f f lim lim 0.8. Noe We kow h ech f F i icreig fucio., by he bove heorem, i i cler h f lim 0, >0. Thi how h he icreig ure of f i low. I oher word, f doe o icree rpidly. Thi juifie he me give o he member of F. From he bove heorem, we hve he followig reul:.9. Theorem If f F lim f 0. he f lim 0 d f I Theorem.7 pu, oge lim 0. f If f F, he lim 0 f f Sice lim 0 we mu hve lim f 0..0. Theorem Le f F, he for y > d erie f diverge o. + We wrie f ( f ) we kow h he erie diverge o, he 48

VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com Give > + > 0 If 0 + he lim f If > 0 he + lim lim (from Theorem.7) f f i.e. f diverge o A impor byproduc of he bove heorem i he followig reul... Theorem Le f F. The for y d lim. + f + > d, From Theorem.0, we hve + lim f + lim f, >, + From Theorem.0, we hve lim f d f () d Coider lim + f + f () lim + f () + f () f () + f lim f f + + f (By L Hopil rule) f (i) If lim, he f i id o ympoiclly g equivle o g. We decribe hi by wriig f g. (ii) f Ο( g) Me f Ag for ome A > 0. I hi ce we y h f i of lrge order g. f (ii) f ο( g) Me lim 0. I hi ce we g y h f i of mll order g..3. Emple (i) Coider f, g +, for ll > 0 f d lim lim g + Therefore f g. (ii) Ο (0 ) Becue (0 ). 0 0 0 (iii) + + ο( ) Becue lim 0. A reul of Theorem., we ge he followig reul priculr ce..4. Theorem Le f F. The we hve he followig eme. (i) f d f (ii) f ( d ) f (iii) Le f F (i) Pu 0 i Theorem., we ge f () d lim f d f () f f () d f (ii) Pu 0, i Theorem., we ge.. Defiiio Le f, g: [, ) ( 0, ) 483

VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com f () d lim f f () d f (iii) Pu 0, - i Theorem., we ge d lim d f () f f.5. Theorem Le f F. The f( + (i) lim, f (ii) If f i decreig he c Le f F For y c f( lim, for y f (i) Ce (). Suppoe c > 0 By Lgrge me vlue heorem, There ei, + c uch h f ( + f ( + c ) f f ( + f cf () 0 f f f ( + cf () 0 lim lim, (, + f () f ( + lim 0, ice lim f 0 (by Theorem.9) f () f ( + lim. f Ce (b). Suppoe c < 0 By Lgrge me vlue heorem here + c, uch h ei f f + c ( f f f + c cf () 0 f f f ( + f () 0 lim clim + c, f (), ( + ) fc lim 0, ice lim f 0 f () (by Theorem.9) f ( + lim. f (ii) Ce (). Suppoec > By Lgrge me vlue heorem here, c uch h ei f ( f ( c ) f f ( f ( c ) f 0 f f f ( f f () 0 lim ( c ) lim f f, (, Ad f ( ) i decreig f > f fc There forelim 0, ice lim f 0 (by Theorem.9) f () f c lim. f Ce (b). Suppoe c < By Lgrge me vlue heorem here c, uch h ei f f c ( f f f ( ( cf ) 0 f f f f ( f () 0 lim ( lim, f f Ad f ( ) i decreig f > f f ( There fore lim 0, f ice lim f 0 (by Theorem.9) ( c, ) f c lim. f.6. Theorem Suppoe f F i uch h f i decreig. If 0 < c c d g i fucio uch h f( g ) c g che lim. f 484

VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com Suppoe f F i uch h f i decreig If 0 < c g c f ( c ) f( g ) f( c ) ice f i decreig f ( c ) f( g ) f( c ) f f f f ( c ) f( g ) f( c ) lim lim lim f f f f( g ) lim f (By Theorem.5) f( g ) lim. f 3. APPLICATIONS OF SLOW INCREASING FUNCTIONS TO SOME PROBLEMS OF NUMBER THEORY Thi ecio deil ome pplicio i problem periig o umber heory. We begi wih he followig impor defiiio. 3.. Defiiio Le f F. Through ou ( ) deoe ricly icreig equece of poiive ieger uch h > d lim for ome. f i.e. f( ) There ei everl uch equece. For emple p, he equece of prime umber i icreig order, f log d. p By prime umber heorem we hve lim log 3.. Theorem Le f :(, ) (, ) be.i.f. ( > ) f () d lim d ( b) <. Suppoe ( ) be b he equece of poiive ieger uch h f. () The.... lim. e Give h f :(, ) (, ) be.i.f. f () b Ad f > d lim d ( < b) log log + log f + ο() If i poiive ieger i iervl [, ) The log k log k+ log f( k) + ο() () k k k k Now Sice log i icreig d poiive i (, ) log k log d+ο(log ) k log +Ο (log ) log + ο (3) O he oher hd if 0 he iequliy ο() < ε Therefore for >, we hve ο() ο() k k ε( + ) < ε i.e. ο() ο k ε > we hve for ll (4) We fid h log f ( k) log f d+ο(log f) k f log f d+ο(log f) (5) f We kow h log f f lim lim (By L Hopil rule) f ( ) f lim 0. f 485

VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com Ο (log f ) ο (6) Now f () d () f f lim lim 0 (By L Hopil rule) f f d ο( ) (7) f From (5), (6) d (7), we ge log f ( k) log f + ο (8) k From (), (3), (4) d (7), we ge k log ( log + ο) + log f + ο + ο k log k log + log f + ο (9) Bu k k log log + log +... + log k log...... ep... ep log k k k log log log + log + ο() (By 9) k k ep ep k ( f ο ) ( f ο ) e ( f +ο ) ep log + log + () ep log + () ep log () e f e e Therefore... e... lim. e... e I view of he bove heorem d prime umber heorem implie he followig. 3.3. Theorem Le p be he equece of prime umber. The pp... p lim. p e d. I heorem 3. pu p, f log Le k, c be he equece of ieger which hve i heir prime fcorizio k prime fcor. Rfel Jkimczuk [ 4 ] proved h c ( k )! log ( log log ) k, ( k ) A reul of previou heorem, we hve he followig reul. 3.4. Theorem c, k. c, k... c, k lim. c e k, I Theorem 3. pu c,, f ( k )!log d. CONCLUSIONS We pply he reul dicued i hi ricle o look io ome of he pplicio i umber heory. ACKNOWLEDGEMENTS The uhor like o epre heir griude owrd he mgeme of Vrdhm College of Egieerig for heir coiuou uppor d ecourgeme durig hi work. Furher uhor would like o hk he oymou referee for goig hrough he ricle wih fie ooh comb d mkig criicl comme o he origil verio of hi mucrip. k 486

VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. REFERENCES [] G. H. Hrdy d E. M. Wrigh. 960. A Iroducio o he Theory of Number. Fourh Ediio. [] R. Jkimczuk. 00. Fucio of low icree d ieger equece. Jourl of Ieger Sequece. 3, Aricle 0... [3] R. Jkimczuk. 005. A oe o um of power which hve fied umber of prime fcor. J. Iequl. Pure Appl. Mh. 6: 5-0. [4] R. Jkimczuk. 007. The rio bewee he verge fcor i produc d he l fcor, mhemicl ciece: Qurerly Jourl. : 53-6. [5] Y. Shg. 0. O limi for he produc of power of prime. Sci. Mg. 7: 3-33. [6] J. Rey Por, P. Pi Cllej d C. Trejo. 969. A lii Mem rico, Volume I, Ocv Ediio, Edioril Kpeluz. www.rpjourl.com 487