Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information

Similar documents
Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Supporting Information. Table of Contents

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Supplementary Information

Supporting Information. for

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Structure Report for J. Reibenspies

A supramoleculear self-assembled flexible open framework based on coordination honeycomb layers possessing octahedral and tetrahedral Co II geometries

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Table of Contents. Section S1. Full Synthetic Procedures of ZIF-1 to ZIF-12. Section S3. Experimental and Simulated PXRD Patterns

Copper Mediated Fluorination of Aryl Iodides

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Selective Binding and Removal of Organic Molecules in a Flexible Polymeric Material with Stretchable Metallosalen Chains

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

(Supporting Information: 47 pages including this page) Pradip Pachfule, Chandan Dey, Kumar Vanka and Rahul Banerjee*

Stereoselective Synthesis of (-) Acanthoic Acid

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Selective total encapsulation of the sulfate anion by neutral nano-jars

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Supporting Information

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

Thermochemistry of Paddle Wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1

Supporting Information

Supporting Information for the Article Entitled

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties

Supporting Information

Supporting Information

metal-organic compounds

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Electronic Supplementary Information (ESI)

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Supporting Information. for. Angew. Chem. Int. Ed Wiley-VCH 2004

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

SUPPLEMENTARY INFORMATION

Supporting Information. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper*

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Supporting Information

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

Supporting Information

Impeller-like dodecameric water clusters in metal organic nanotubes

Manganese-Calcium Clusters Supported by Calixarenes

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

Microporous Manganese Formate: A Simple Metal-Organic Porous Material with High Framework Stability and Highly Selective Gas Sorption Properties

Supporting Information

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Supporting Information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Supporting Information for

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

An Unusual High Thermal Stable 2D 3D Polycatenated. Fe(II) Metal-Organic Framework Showing. Guest-Dependent Spin-Crossover Behavior and High

Nerve Agent Surrogate

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability

A Clipped [3]Rotaxane Derived From Bis-nor-seco-Cucurbit[10]uril

Supporting Information

Department of Chemistry, Tianjin University, Tianjin , P. R. China Tel:

metal-organic compounds

in a Porous Metal-Organic Framework [Zn 2 (BPnDC) 2 (bpy)]

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Supporting Information

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

SUPPLEMENTARY INFORMATION

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Supporting Information

Supplementary Information

metal-organic compounds

,

the multiple helices

Spin Transition and Structural Transformation in a

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information. Integration of accessible secondary metal sites into MOFs for H 2 S removal

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Supporting Information

Transcription:

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), 4900 4904. (10.1073/pnas.082051899) Supporting Information Table 1. Syntheses of MOF-102 112 MOFn MOF- 102 Link and Abbreviation Cl O 2 C CO 2 Cl Cl 2 -BDC Chem ical Form ula Space Group; a, b, c (Å); a, ß,?( ); V (Å 3 ); Z Cu2(Cl2-BDC)2(DMF)2.(H 2O)(DMF)3.5 P-1; 9.3845, 10.7943, 10.8305; 91.633,106.243, 112.005; 965.6; 1 MOF- 103 O 2 C CO 2 CB-BDC Zn2(CB-BDC)2(H 2O)2 (H 2O)3(DMF)1.8 P21/n; 7.3386, 16.8338, 12.5204; 90.00, 94.714, 90.00; 1541.5; 2 MOF- 104 O 2 C CDC CO 2 Zn2(CDC)2(DMF)2 (DMF)2(ClBz) C2/m; 13.7877, 16.6254, 10.6179; 90.00, 112.364, 90.00; 2250.83; 2 MOF- 105 O 2 C NDC CO 2 Zn2(NDC)2(DMF)2 (ClBz) P21/c; 8.130, 16.444, 12.807; 90.00, 92.127, 90.00; 1711.1; 2 MOF- 106 O 2 C BPDC CO 2 Fe2(BPDC)2(DMF)2 (H 2O)0.4(DMF)3.6 C2/c; 27.124, 15.270, 12.0109; 90.00, 94.604, 90.00; 4958.7, 4 MOF- 107 MOF- 108 S O 2 C CO 2 TDC S O 2 C CO 2 TDC Cu2(TDC)2(DEF)2 (H 2O) (DEF)3 P-1; 11.0318, 18.0673, 18.4528; 104.812, 97.075, 95.206; 3499.9; 4 Cu2(TDC)2(CH 3OH)2 (DBF)2 P21/c; 15.474, 14.514, 14.031; 90.00, 113.63, 90.00; 2887.2, 4 MOF- 109 O 2 C O KDB CO 2 Cu2(KDB)2(DMF)2.(H 2O)2(DMF)8 P21/c; 23.8801, 16.8339, 18.3890; 90.00, 111.979, 90.00; 6855.0; 4 MOF- 110 S O 2 C CO 2 TDC Cu2(TDC)2(DMF)2 (H 2O) (DMF)3.5 R(-3)m; 20.0468, 20.0468, 20.7484; 90.00, 90.00, 120.00; 7221.0; 4.5 MOF- 111 MOF- 112 O 2 C CO 2 O 2 C Br Br-BDC CO 2 Br o -Br-m -BDC Cu2(TDC)2(DMF)2 (H 2O)(DMF)2 C2/c; 10.677, 18.781, 21.052; 90.00, 102.16, 90.00; 4127; 4 Cu2(Br-BDC)2(DMF)2 (H 2O)2 (DMF)2 C2/c; 29.3240, 21.2972, 18.0688; 90.00, 107.49, 90.00; 10762.7; 12 1

Syntheses of MOF-102 112 (MOF-102): Cu 2 (Cl 2 -BDC) 2 (DMF) 2 (H 2 O) 2 (DMF) 3.5. An exact amount of 2,5- dichlorobenzene dicarboxylic acid, (Cl 2 -BDCH 2 ) (11.20 mg, 0.048 mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (9.6 mg, 0.046 mmol) was dissolved in N,N -dimethylformamide (DMF)/ethanol (1.5 ml/0.5 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant blue crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF-102. Elemental analysis: C 32.5 H 46.5 O 15.5 N 5.5 Cl 4 Cu 2 = Cu 2 (Cl 2 -BDC) 2 (DMF) 2 (H 2 O) 2 (DMF) 3.5 : Calcd. C, 37.86; H, 4.55; N, 7.47. Found C, 37.99; H, 4.07; N, 7.55. FT-IR: (KBr, 3500 400 cm 1 ): 3440 (br), 2931 (w), 1642 (s), 1580 (w), 1388 (vs), 1327 (w), 1255 (w), 1154 (w), 1108 (w), 1087 (m), 1123 (w), 914 (w), 838 (w), 798 (w), 675 (w), 598 (w). (MOF-103): Zn 2 (CB-BDC) 2 (H 2 O) 2 (H 2 O) 3 (DMF) 1.8. A mixture of anhydrous ZnCl 2 (0.06 g, 0.44 mmol) and 1,2-dihydrocyclobutabenzene-3,6-dicarboxylic acid (CB- BDCH 2 ) (0.05 g, 0.261 mmol) was dissolved in N,N'-dimethylformamide (10 ml) and transferred to a 20-ml glass vial. An aqueous solution of methylamine (0.6 M) was added dropwise to the solution (2.0 ml). The solution immediately became slightly cloudy. The mixture was vigorously shaken and then allowed to stand at room temperature for several days. Clear rectangular crystals were formed on the bottom of the vial and were collected for analysis by vacuum filtration. Elemental Analysis: C 26 H 36.4 N 1.8 Zn 2 = Zn 2 (CB-BDC) 2 (H 2 O) 2 (H 2 O) 3 (DMF) 1.8 : Calcd. C, 41.64; H, 4.76; N, 3.44. Found C, 42.89; H, 6.75; N, 3.28. 2

FT-IR: (KBr 4000 500 cm 1 ): 3415.0 (br), 2973.9 (m), 2941.0 (m), 1683.0 (m), 1584.9 (vs), 1520.0 (s), 1492.8 (vs), 1394.0 (vs), 1336.6 (s), 1234.7 (w), 1203.1 (m), 1137.3 (m), 1061.5 (w), 1030.9 (w), 939.2 (w), 834.5 (s), 775.2 (s), 742.3 (m), 577.7 (m), 525.1 (s). (MOF-104): Zn 2 (CDC) 2 (DMF) 2 (DMF) 2 (ClBz). 1,4-Cubanedicarboxylic acid (CDCH 2 ) (0.420 g, 2.19 mmol) and zinc(ii) nitrate hexahydrate (0.660 g, 2.22 mmol) were dissolved in N,N'-dimethylformamide (30 ml). The solution was then diluted with chlorobenzene (ClBz) (30 ml). The resulting clear solution was distributed equally into six vials. These vials were placed in a larger container having a small vial containing triethylamine (0.50 ml) and chlorobenzene (5 ml), which was sealed and left undisturbed at room temperature. After 12 days, the colorless block-shaped crystals were collected, washed with 3 10 ml of mixed solvent (DMF : ClBz = 1: 1). (MOF-105): Zn 2 (NDC) 2 (DMF) 2 (ClBz). In a 20-ml vial, 2,6-naphtalenedicarboxylic acid (NDCH 2 ) (0.076g, 0.36mmol) and zinc(ii) nitrate hexahydrate (0.110 g, 0.37 mmol) were added along with 5 ml of dimethylformamide (DMF) and 5 ml chlorobenzene (ClBz) an stirred and reactants dissolved. The vial was introduced into a 60-ml vial containing 2 ml of dimethylformamide, 2 ml of chlorobenzene, and 0.15 ml of triethylamine, and then sealed. The mixture was left to crystallize for 3 days and it was then filtered, washed with 3 10 ml of dimethylformamide, and left to air dry yielding 0.134 g (0.92 %) of MOF-105. Elemental analysis: C 36 H 31 N 2 O 10 ClZn 2 = Zn 2 (NDC) 2 (DMF) 2 (ClBz): Calcd. C, 52.87; H, 3.82; N, 3.43; Cl, 4.33. Found C, 52.25; H, 3.76; N, 3.36; Cl, 4.56. FT-IR: (KBr, 3500 400 cm 1 ): 3441 (br), 3092 (w), 3059 (w), 3000 (w), 2960 (w), 2921 (w), 2809 (w), 1835 (w), 1644 (s), 1493 (vs), 1407 (vs), 1361 (s), 1256 (vs), 1190 (w), 1124 (w), 1085 (w), 1019 (w), 927 (w), 874 (w), 841 (w), 788 (s),, 690 (m), 644 (w), 591 (w), 565 (w), 486 (m). 3

(MOF-106): Fe 2 (BPDC) 2 (DMF) 2 (H 2 O) 0.4 (DMF) 3.6. Equimolar amounts of iron(ii) bromide, FeBr 2, (0.2 g, 0.927 mmol) and 4,4-biphenyldicarboxylic acid, BPDCH 2, (0.225 g, 0.927 mmol) were stirred in 60 ml of N,N'-dimethylformamide at room temperature for 2 h to give an orange solution with partially dissolved BPDC starting material. A mixture of approximately 70% DMF reaction solution and 30% 1-propanol were placed in a 10- mm (OD) Pyrex tube to be evacuated and flame sealed. The reaction tube was heated to 120ºC at a rate of 5ºC/min and held at that temperature for 20 h, then cooled at a rate of 1ºC/min to room temperature. Upon heating, the remaining undissolved starting material goes into solution and crystal formation occurs during the isotherm. The resulting product can be described as a mixture of large, transparent, yellow crystalline plates and a fine red/brown crystalline material in a clear solution. The tube contents are washed with a 3 10 ml DMF/1-propanol (10:3) solution, upon which the larger yellow crystals and fine crystalline powder is isolated and air-dried to give 0.250 g (61% yield) of MOF-106. Elemental analysis: C 37 H 49 N 3 O 17 Fe 2 = Fe 2 (BPDC) 2 (DMF) 2 (DMF)(H 2 O) 6 : Calcd. C, 48.33: H, 5.37; N, 4.37. Found C, 47.82; H, 4.49; N, 4.73. FT-IR: (KBr, 3500 400 cm 1 ): 3064 (w), 2965 (w), 2925 (w), 1673 (s), 1608 (s), 1581 (s), 1529 (s), 1397 (vs, broad), 1299 (vs), 1182 (m), 1104 (m), 1010 (m), 852 (m), 797 (m), 768 (s), 700, (m), 680 (m), 467 (m). (MOF-107): Cu 2 (TDC) 2 (DEF) 2 (H 2 O)(DEF) 3. An exact amount of 2,5- thiophenedicarboxylic acid, (TDCH 2 ) (18.0 mg, 0.010 mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (23.5 mg, 0.010 mmol) was dissolved in N,N'- diethylformamide (DEF)/ethanol (1.6 ml/0.4 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant blue crystals was filtered, and washed with the DEF/ethanol mixture (3 5 ml) to yield MOF-107. 4

Elemental analysis: C 39 H 69 O 16 N 5 S 2 Cu 2 = Cu 2 (TDC) 2 (DEF) 2 (H 2 O)(DEF) 3 : Calcd. C, 44.64; H, 5.99; N, 6.81. Found C, 44.64; H, 5.99; N, 6.81. FT-IR: (KBr, 3500 400 cm 1 ): 3430 (br), 2982 (m), 2935 (w), 2875 (w), 1658 (s), 1617 (vs), 1541 (m), 1464 (w), 1383 (vs), 1266(w), 1210 (w), 1123 (w), 1026 (w), 950 (w), 848 (w), 812 (w), 767 (s), 695 (w), 65 (w), 537(w). (MOF-108): Cu 2 (TDC) 2 (CH 3 OH) 2 (DBF). An exact amount of 2,5- thiophenedicarboxylic acid, (TDCH 2 ) (16.8 mg, 0.098 mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (22.8 mg, 0.098 mmol) was dissolved in dibutylformamide (DBF)/methanol (0.6 ml/0.3 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant crystals was filtered, and washed with the DMF/ethanol mixture (3 5ml) to yield MOF-108. Elemental analysis: C 24 H 34 O 13 N 4 S 2 Cu 2 = Cu 2 (TDC) 2 (CH 3 OH) 2 (CH 3 OH) 2 (DMF) 4 : Calcd. C, 37.88; H, 5.45; N, 6.31. Found C, 37.43; H, 4.96; N, 6.59. FT-IR: (KBr, 3500 400 cm 1 ): 3440 (br), 2956 (w), 2870 (w), 1617 (s), 1534 (m), 1464 (w), 1378 (vs), 1215(w), 1123 (w), 1026 (w), 848 (w), 772 (m), 537(w). (MOF-109): Cu 2 (KDB) 2 (DMF) 2 (H 2 O) 2 (DMF) 8. An exact amount of benzophenone 4,4'-dicarboxylic acid, KDBH 2, (22.00 mg, 0.080 mmol) and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (19.2 mg, 0.081 mmol) was dissolved in a 1.5-ml DMF solution. Ethanol (0.5 ml) was added and the solution placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant blue crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF-109. 5

Elemental analysis: C 60 H 90 O 22 N 10 Cu 2 = Cu 2 (KDB) 2 (DMF) 2 (H 2 O) 2 (DMF) 8 Calcd. C, 50.38; H, 6.34; N, 9.95. Found C, 50.13; H, 6.24; N, 9.92. FT-IR: (KBr, 3500 400 cm 1 ): 3429 (br), 2935 (m), 1668 (s), 1617 (s), 1556(m), 1510(m), 1408 (vs), 1301 (w), 1271 (m), 1113 (w), 1021 (w), 940 (m), 843 (m), 787 (m), 731 (m), 537 (w), 450(w). (MOF-110): Cu 2 (TDC) 2 (DMF) 2 (H 2 O)(DMF) 2. An exact amount of 2,5- thiophenedicarboxylic acid, (TDCH 2 ) (18.0 mg, 0.010 mmol), and copper(ii) nitrate hemi-pentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (23.5 mg, 0.010 mmol) was dissolved in DMF/ethanol (1.5ml/0.5 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant green, polyhedron crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF-110. Elemental analysis: C 24 H 34 O 13 N 4 S 2 Cu 2 = Cu 2 (TDC) 2 (DMF) 2 (H 2 O)(DMF) 2 : Calcd. C, 37.06; H, 4.41; N, 7.20. Found C, 37.26; H, 4.50; N, 7.11. FT-IR: (KBr, 3500 400 cm 1 ): 3440 (br), 3109 (w), 2930 (w), 1668 (s), 1612 (vs), 1536 (m), 1378 (vs), 1255(w), 1103 (w), 1062 (w), 1031 (w), 863 (w), 812 (w), 777 (m), 680 (w), 537(w). (MOF-111): Cu 2 (Br-BDC) 2 (DMF) 2 (DMF) 3 (H 2 O) 2. An exact amount of 2- bromobenzenedicaroxylic acid (Br-BDCH 2 ) (17.25 mg, 0.07 mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (16.13 mg, 0.07 mmol) was dissolved in solvent mixture DMF/ethanol (1.5 ml/0.5 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant blue crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF-111. 6

Elemental analysis: C 31 H 25 Br 2 O 15 N 5 Cu 2 = Cu 2 (Br-BDC) 2 (DMF) 2 (DMF) 3 (H 2 O) 2 : Calcd. C, 36.70; H, 4.47; N, 6.90. Found C, 37.19; H, 4.24; N, 6.94. FT-IR: (KBr, 3500 400 cm 1 ): 3455 (br), 3073 (w), 2930 (w), 2808 (w), 1978 (s), 1622 (vs), 1495 (m), 1393 (vs), 1251(w), 1149 (w), 1098(w), 1067 (w), 1037 (w), 914 (w), 833 (m), 772 (m), 742 (w), 680 (w), 568(w). Cu 2 (o-br-m-bdc) 2 (DMF) 2 (H 2 O) 2 (DMF) 2 (MOF-112). An exact amount of 2- bromoisophtalic acid, (o-br-m-bdch 2 ) (17.25 mg, 0.07 mmol), and copper(ii) nitrate hemipentahydrate, Cu(NO 3 ) 2 2.5H 2 O, (16.13 mg, 0.07 mmol) was dissolved in DMF/ethanol (1.5 ml/0.5 ml). The solution was placed in a Pyrex tube (10 mm 8 mm o.d. i.d., 140 mm length). The evacuated tube was sealed and heated to 80 C for 20 h at a rate of 2.0 C/min, then cooled to room temperature at a rate of 1.0 C/min. The resultant green crystals was filtered, and washed with the DMF/ethanol mixture (3 5 ml) to yield MOF-112. Elemental analysis: C 30 H 24 Br 2 O 15 N 4 Cu 2 = Cu 2 (o-br-m-bdc) 2 (DMF) 2 (H 2 O) 2 (DMF) 2 : Calcd C, 35.72; H, 4.07; N, 5.95. Found C, 36.07; H, 4.07; N, 5.85. FT-IR: (KBr, 3500-400 cm -1 ): 3435 (br), 2936 (w), 1663 (s), 1622 (vs), 1500 (w), 1439 (m), 1388 (vs), 1255(w), 1180 (w), 1113 (w), 1062 (w), 925 (w), 779 (w), 731 (w), 705 (w), 527(w). NB: The series of compounds 102 112 were insoluble to most common organic solvents, such as ethanol, methanol, propanol, butanol, acetonitrile, tetrahydrofuran, chloroform, dichloromethane, benzene, acetone, N,N'-dimethylformamide, and N,N'- diethylformamide. 7

X-Ray Crystallographic Data for MOF-102 112 X-Ray Crystallography of MOF-102. A blue, block crystal (0.10 0.10 0.10 mm) of MOF-102 was coated with a light hydrocarbon-based inert oil and mounted on a standard Bruker SMART APEX CCD-based x-ray diffractometer equipped with a normal focus Mo-target x-ray tube (λ = 0.71073 Å). The x-ray intensities were measured at 153(2) K. Data frames were collected with a scan width of 0.3 in ω and phi with an exposure time of 30 s per frame. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm (SAINT PLUS, V. 6.01, Bruker Analytical X-ray, Madison, WI). The integration of the data yielded a total of 5,255 reflections to a maximum 2θ value of 55.06, of which 3,840 were independent and 2,031 were greater than 2σ(I). The final cell constants (Table 1) were based on xyz centroids of 803 reflections above 10 σ(i). Analysis of the data showed negligible decay during data collection. Absorption correction was applied for the integrated intensity data by SADABS [Sheldrick, G. M. (1996) SADABS: Program for Empirical Absorption Correction of Area Detector Data (University of Göttingen, Germany)]. The structure was solved by direct methods and the subsequent difference Fourier methods. Refinement processes were carried out with the Bruker SHELXTL (Version 5.10) software package [Sheldrick, G. M. (1997) SHELXTL, V. 5.10; Bruker Analytical X-ray, Madison, WI], using the centrosymmetric space group P( 1) with Z = 1 for the formula. There were two independent half Cl 2 BDC links and a copper atom in general positions. The axial positions of the copper atoms were coordinated with DMF molecules. A DMF molecule was included in the void space as a guest molecule. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were also included with ideal geometry. Final full matrix least-squares refinement converged to R1 = 0.0756 (I > 2σ(I)) and wr2 = 0.2134 (all data) with GOF = 0.967. 8

Fig. 3. ORTEP drawing of MOF-102. 9

Table 3. Crystal data and structure refinement for MOF-102 Identification code MOF-102 Empirical formula C28 H32 N4 O12 Cl4 Cu2 Formula weight 885.46 Temperature 153(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P(-1) Unit cell dimensions a = 9.3845(12) Å α= 91.633(3). b = 10.7943(14) Å β= 106.243(2). c = 10.8305(14) Å γ = 112.005(3). Volume 965.6(2) Å 3 Z 1 Density (calculated) 1.523 Mg/m 3 Absorption coefficient 1.438 mm 1 F(000) 450 Crystal size 0.10 0.10 0.10 mm 3 Theta range for data collection 1.98 to 27.53. Index ranges 8<=h<=12, 13<=k<=13, 14<=l<=10 Reflections collected 5255 Independent reflections 3840 [R(int) = 0.0412] Completeness to theta = 27.53 86.4 % Absorption correction SADABS Max. and min. transmission 0.7377 and 1.0000 Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 3840/0/226 Goodness-of-fit on F 2 0.967 Final R indices [I>2sigma(I)] R1 = 0.0756, wr2 = 0.1978 R indices (all data) R1 = 0.1274, wr2 = 0.2134 Largest diff. peak and hole 1.624 and -1.139 e.å -3 10

Table 4. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å 2 10 3 ) for MOF-102 [U(eq) is defined as one-third of the trace of the orthogonalized U ij tensor] x y z U(eq) Cu(1) 8388(1) -526(1) -391(1) 22(1) Cl(1) 9231(4) 3262(2) -2628(2) 45(1) Cl(2) 11950(3) 2748(2) 4244(2) 38(1) O(1) 8738(8) 1390(5) -291(6) 33(2) O(2) 11432(8) 2275(5) 331(6) 34(2) O(3) 8598(8) -421(6) 1463(5) 32(2) O(4) 11310(8) 493(6) 2114(5) 32(2) C(1) 10071(12) 2327(8) 17(8) 25(2) C(2) 10072(11) 3740(8) 2(8) 27(2) C(3) 9645(12) 4229(8) -1150(8) 33(2) C(4) 9550(11) 5472(8) -1155(8) 29(2) C(5) 9977(12) 56(7) 2313(8) 21(2) C(6) 9980(10) 69(8) 3698(7) 21(2) C(7) 10875(11) 1220(8) 4654(8) 27(2) C(8) 10895(11) 1145(8) 5931(8) 28(2) O(1S) 5853(8) -1366(6) -1204(6) 35(2) N(1S) 3631(10) -2802(8) -2767(8) 43(2) C(1S) 5130(13) -2366(9) -2094(9) 38(2) C(2S) 2621(14) -2171(13) -2575(13) 71(4) C(3S) 2918(16) -3916(13) -3799(12) 78(4) O(2S) 4093(11) 5136(9) 3185(9) 82(3) N(2S) 4634(14) 6901(11) 2053(13) 83(4) C(4S) 4385(16) 6322(14) 3106(13) 71(4) C(5S) 4560(20) 6019(18) 846(16) 122(7) C(6S) 4908(19) 8347(16) 2127(19) 131(8) 11

Table 5. Bond lengths (Å) and angles ( ) for MOF-102 Cu(1)-O(3) 1.957(6) Cu(1)-O(2)#1 1.959(5) Cu(1)-O(4)#1 1.964(6) Cu(1)-O(1) 1.964(5) Cu(1)-O(1S) 2.103(6) Cu(1)-Cu(1)#1 2.664(2) Cl(1)-C(3) 1.748(8) Cl(2)-C(7) 1.727(9) O(1)-C(1) 1.224(10) O(2)-C(1) 1.250(10) O(2)-Cu(1)#1 1.959(5) O(3)-C(5) 1.263(10) O(4)-C(5) 1.244(10) O(4)-Cu(1)#1 1.964(6) C(1)-C(2) 1.525(10) C(2)-C(4)#2 1.369(10) C(2)-C(3) 1.383(11) C(3)-C(4) 1.378(10) C(4)-C(2)#2 1.369(10) C(5)-C(6) 1.499(10) C(6)-C(8)#3 1.400(11) C(6)-C(7) 1.407(11) C(7)-C(8) 1.384(11) C(8)-C(6)#3 1.400(11) O(1S)-C(1S) 1.258(10) N(1S)-C(1S) 1.282(12) N(1S)-C(2S) 1.411(14) N(1S)-C(3S) 1.430(13) O(2S)-C(4S) 1.216(13) N(2S)-C(4S) 1.352(15) N(2S)-C(6S) 1.480(16) N(2S)-C(5S) 1.565(18) O(3)-Cu(1)-O(2)#1 88.6(2) O(3)-Cu(1)-O(4)#1 167.6(3) O(2)#1-Cu(1)-O(4)#1 89.4(3) O(3)-Cu(1)-O(1) 89.4(2) O(2)#1-Cu(1)-O(1) 167.2(3) O(4)#1-Cu(1)-O(1) 89.8(3) O(3)-Cu(1)-O(1S) 100.3(2) O(2)#1-Cu(1)-O(1S) 94.6(3) O(4)#1-Cu(1)-O(1S) 92.1(2) O(1)-Cu(1)-O(1S) 98.2(2) O(3)-Cu(1)-Cu(1)#1 85.62(19) O(2)#1-Cu(1)-Cu(1)#1 85.2(2) O(4)#1-Cu(1)-Cu(1)#1 81.99(19) O(1)-Cu(1)-Cu(1)#1 82.04(19) O(1S)-Cu(1)-Cu(1)#1 174.11(18) C(1)-O(1)-Cu(1) 124.2(6) C(1)-O(2)-Cu(1)#1 120.1(6) C(5)-O(3)-Cu(1) 120.6(6) C(5)-O(4)-Cu(1)#1 125.0(5) O(1)-C(1)-O(2) 128.4(8) O(1)-C(1)-C(2) 115.9(8) O(2)-C(1)-C(2) 115.7(8) C(4)#2-C(2)-C(3) 119.0(7) C(4)#2-C(2)-C(1) 119.3(7) C(3)-C(2)-C(1) 121.6(7) C(4)-C(3)-C(2) 121.1(7) C(4)-C(3)-Cl(1) 119.3(7) C(2)-C(3)-Cl(1) 119.6(6) C(2)#2-C(4)-C(3) 119.8(7) O(4)-C(5)-O(3) 126.8(8) O(4)-C(5)-C(6) 117.6(8) O(3)-C(5)-C(6) 115.6(8) C(8)#3-C(6)-C(7) 118.5(7) C(8)#3-C(6)-C(5) 118.1(7) 12

Table 5 (continued) C(7)-C(6)-C(5) 123.4(7) C(8)-C(7)-C(6) 120.5(8) C(8)-C(7)-Cl(2) 119.2(6) C(6)-C(7)-Cl(2) 120.4(6) C(7)-C(8)-C(6)#3 121.1(7) C(1S)-O(1S)-Cu(1) 121.7(7) C(1S)-N(1S)-C(2S) 122.0(9) C(1S)-N(1S)-C(3S) 121.3(10) C(2S)-N(1S)-C(3S) 116.6(10) O(1S)-C(1S)-N(1S) 124.9(10) C(4S)-N(2S)-C(6S) 115.9(14) C(4S)-N(2S)-C(5S) 119.3(12) C(6S)-N(2S)-C(5S) 124.8(13) O(2S)-C(4S)-N(2S) 124.1(14) Symmetry transformations used to generate equivalent atoms: #1 x + 2, y, z #2 x + 2, y + 1, z #3 x + 2, y, z + 1 13

Table 6. Anisotropic displacement parameters (Å 2 10 3 ) for MOF-102 [the anisotropic displacement factor exponent takes the form: 2π 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ]] U 11 U 22 U 33 U 23 U 13 U 12 Cu(1) 46(1) 12(1) 14(1) 8(1) 13(1) 16(1) Cl(1) 95(2) 28(1) 22(1) 7(1) 18(1) 36(1) Cl(2) 67(2) 21(1) 23(1) 9(1) 19(1) 10(1) O(1) 39(4) 14(3) 44(4) 6(3) 9(3) 12(3) O(2) 48(4) 18(3) 36(4) 6(3) 12(3) 15(3) O(3) 46(4) 40(4) 14(3) 6(3) 12(3) 19(3) O(4) 42(4) 40(4) 15(3) 7(3) 13(3) 13(3) C(1) 41(6) 22(5) 15(4) 8(3) 8(4) 17(5) C(2) 54(6) 16(4) 20(4) 8(3) 14(4) 20(4) C(3) 64(7) 18(4) 21(5) 3(4) 10(5) 24(5) C(4) 57(6) 16(4) 22(5) 15(3) 14(4) 22(4) C(5) 42(6) 8(4) 20(4) 6(3) 14(4) 13(4) C(6) 35(5) 20(4) 9(4) 7(3) 11(4) 11(4) C(7) 49(6) 23(4) 14(4) 8(3) 15(4) 16(4) C(8) 48(6) 21(4) 18(4) 2(3) 14(4) 15(4) O(1S) 51(4) 27(3) 33(4) 10(3) 21(3) 16(3) N(1S) 35(5) 42(5) 43(5) 8(4) 7(4) 7(5) C(1S) 51(7) 33(5) 33(6) 13(5) 20(5) 16(5) C(2S) 52(8) 65(8) 90(11) 15(7) 22(7) 16(7) C(3S) 76(10) 69(9) 62(9) 4(7) 3(7) 14(8) O(2S) 100(8) 59(6) 97(8) 44(5) 41(6) 32(6) N(2S) 84(9) 67(7) 106(10) 51(7) 41(7) 28(7) C(4S) 82(10) 66(9) 70(10) 31(7) 32(8) 29(8) C(5S) 138(16) 135(15) 80(12) 31(11) 62(11) 20(13) C(6S) 85(12) 100(12) 220(20) 113(13) 45(12) 47(10) 14

Table 7. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å 2 10 3 ) for MOF-102 x y z U(eq) H(4) 9224 5781 1956 34 H(8) 11512 1929 6567 34 H(1SA) 5742 2835 2282 45 H(2SA) 3231 1431 1844 86 H(2SB) 1689 2833 2383 86 H(2SC) 2242 1811 3364 86 H(3SA) 3721 4279 3836 93 H(3SB) 2553 3610 4627 93 H(3SC) 1991 4623 3642 93 H(4SA) 4441 6876 3831 85 H(5SA) 4353 5094 1028 146 H(5SB) 5599 6402 669 146 H(5SC) 3694 6009 87 146 H(6SA) 4908 8674 2980 157 H(6SB) 4044 8457 1444 157 H(6SC) 5955 8868 2006 157 15

X-Ray Crystallography of MOF-103. A rectangular colorless crystal (0.05 0.02 0.020 mm) of MOF-103 was set on a cryo-loop in a thin layer of inert oil and mounted on a Bruker SMART CCD diffractometer equipped with a normal focus Mo-target x-ray tube (λ = 0.71073 Å) operated at 2,000 W power (50 kv, 40 ma). The x-ray intensities were measured at 158(2) K. Data frames were collected with a scan width of 0.3 in ω and phi with an exposure time of 30 s per frame. The frames were integrated with the SAINT software package with a narrow frame algorithm. The integration of the data yielded 3,162 unique reflections to a maximum 2 value of 52.92, of which 2,234 were greater than 2σ(I). Analysis of the data showed negligible decay during data collection. While an absorption correction was not applied, all data were corrected for the extinction effect. The structure was solved by direct methods and subsequent difference Fourier syntheses and refined with the SHELXTL (Version 5.10) software package, using the space group P2 1 /n with Z = 4 for the formula based on the elemental analysis. All nonhydrogen atoms were refined anisotropically. The DMF and water guest molecules were disordered and their occupancies were refined. The hydrogen atoms were added with ideal geometries. Final full matrix least-squares refinement on F 2 converged to R1 = 0.0682 (F > σ(f)) and wr2 = 0.1158 (all data) with GOF = 0.979. Additional details are presented in Table 1 and the accompanying text. 16

Fig. 4. ORTEP drawing of MOF-103. 17

Table 8. Crystal data and structure refinement for MOF-103 Identification code MOF-103 Empirical formula C13.39 H15.08 N0.95 O7.15 Zn Formula weight 369.03 Temperature 158(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2(1)/n Unit cell dimensions a = 7.3386(5) Å α= 90.000(3). b = 16.8338(12) Å β= 94.714(3). c = 12.5204(8) Å γ = 90.000(3). Volume 1541.49(18) Å 3 Z 4 Density (calculated) 1.590 Mg/m 3 Absorption coefficient 1.628 mm 1 F(000) 757 Crystal size.05.02.02 mm 3 Theta range for data collection 2.03 to 26.46. Index ranges 9<=h<=9, 0<=k<=21, 0<=l<=15 Reflections collected 3162 Independent reflections 3162 [R(int) = 0.0000] Completeness to theta = 26.46 99.5 % Absorption correction None Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 3162/0/216 Goodness-of-fit on F 2 0.979 Final R indices [I>2sigma(I)] R1 = 0.0436, wr2 = 0.1075 R indices (all data) R1 = 0.0682, wr2 = 0.1158 Extinction coefficient 0.0056(9) Largest diff. peak and hole 0.923 and 0.658 e.å 3 18

Table 9. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å 2 10 3 ) for MOF-103 [U(eq) is defined as one-third of the trace of the orthogonalized U ij tensor] x y z U(eq) O(6) 4050(9) 5452(4) 6761(4) 119(3) C(11) 6411(15) 6428(7) 4817(8) 158(6) C(13) 5029(14) 5695(6) 6239(6) 93(3) C(12) 3072(19) 6593(9) 5098(9) 221(8) N(1) 4990(11) 6221(5) 5376(5) 110(3) O 5191(16) 9987(5) 8614(10) 123(6) O' 7690(40) 5603(17) 5720(20) 232(18) O" 6210(40) 5110(15) 6740(20) 74(12) O* 5650(50) 9540(20) 9760(30) 240(20) Zn(1) 11763(1) 4939(1) 9476(1) 15(1) O(1) 10442(3) 5814(2) 8641(2) 28(1) O(2) 7729(4) 5857(2) 9343(2) 30(1) O(3) 5160(4) 9132(2) 6188(2) 31(1) O(4) 7890(3) 9205(1) 5525(2) 26(1) O(5) 13778(3) 4696(2) 8572(2) 27(1) C(1) 8876(5) 6097(2) 8723(3) 24(1) C(2) 8318(5) 6800(2) 8034(3) 23(1) C(3) 6596(5) 7144(2) 8013(3) 30(1) C(4) 4745(6) 7094(3) 8478(5) 59(2) C(5) 4227(6) 7856(3) 7777(5) 61(2) C(6) 6141(5) 7806(2) 7411(3) 29(1) C(7) 7328(5) 8177(2) 6771(3) 22(1) C(8) 9054(5) 7826(2) 6768(3) 30(1) C(9) 9525(5) 7155(2) 7372(3) 30(1) C(10) 6750(5) 8891(2) 6115(3) 23(1) 19

Table 10. Bond lengths (Å) and angles ( ) for MOF-103 _ O(6)-C(13) 1.090(10) C(11)-N(1) 1.349(9) C(13)-N(1) 1.396(10) C(12)-N(1) 1.554(12) O-O* 1.64(4) O*-O*#1 1.94(7) Zn(1)-O(5) 1.978(2) Zn(1)-O(2)#2 2.007(2) Zn(1)-O(1) 2.009(2) Zn(1)-O(4)#3 2.075(2) Zn(1)-O(3)#4 2.082(2) Zn(1)-Zn(1)#2 3.0023(8) O(1)-C(1) 1.256(4) O(2)-C(1) 1.258(4) O(2)-Zn(1)#2 2.007(2) O(3)-C(10) 1.246(4) O(3)-Zn(1)#5 2.082(2) O(4)-C(10) 1.275(4) O(4)-Zn(1)#6 2.075(2) C(1)-C(2) 1.501(5) C(2)-C(3) 1.388(5) C(2)-C(9) 1.396(5) C(3)-C(6) 1.372(5) C(3)-C(4) 1.523(5) C(4)-C(5) 1.583(6) C(5)-C(6) 1.515(5) C(6)-C(7) 1.380(5) C(7)-C(8) 1.398(5) C(7)-C(10) 1.497(5) C(8)-C(9) 1.387(5) O(6)-C(13)-N(1) 136.9(11) C(11)-N(1)-C(13) 126.7(10) C(11)-N(1)-C(12) 120.3(10) C(13)-N(1)-C(12) 112.9(8) O-O*-O*#1 80(2) O(5)-Zn(1)-O(2)#2 100.43(11) O(5)-Zn(1)-O(1) 101.84(11) O(2)#2-Zn(1)-O(1) 157.72(11) O(5)-Zn(1)-O(4)#3 103.20(10) O(2)#2-Zn(1)-O(4)#3 87.56(12) O(1)-Zn(1)-O(4)#3 88.31(11) O(5)-Zn(1)-O(3)#4 98.62(11) O(2)#2-Zn(1)-O(3)#4 86.39(12) O(1)-Zn(1)-O(3)#4 89.34(12) O(4)#3-Zn(1)-O(3)#4 158.07(10) O(5)-Zn(1)-Zn(1)#2 167.37(8) O(2)#2-Zn(1)-Zn(1)#2 80.71(8) O(1)-Zn(1)-Zn(1)#2 77.36(8) O(4)#3-Zn(1)-Zn(1)#2 89.40(7) O(3)#4-Zn(1)-Zn(1)#2 68.83(7) C(1)-O(1)-Zn(1) 129.9(3) C(1)-O(2)-Zn(1)#2 125.2(2) C(10)-O(3)-Zn(1)#5 142.3(3) C(10)-O(4)-Zn(1)#6 114.1(2) O(1)-C(1)-O(2) 126.3(3) O(1)-C(1)-C(2) 117.4(3) O(2)-C(1)-C(2) 116.3(3) C(3)-C(2)-C(9) 115.6(3) C(3)-C(2)-C(1) 123.0(3) C(9)-C(2)-C(1) 121.4(3) C(6)-C(3)-C(2) 121.9(4) C(6)-C(3)-C(4) 94.0(3) C(2)-C(3)-C(4) 144.0(4) C(3)-C(4)-C(5) 85.7(3) C(6)-C(5)-C(4) 86.4(3) C(3)-C(6)-C(7) 123.4(4) 20

Table 10 (continued) C(3)-C(6)-C(5) 93.9(3) C(7)-C(6)-C(5) 142.7(4) C(6)-C(7)-C(8) 115.2(3) C(6)-C(7)-C(10) 121.2(3) C(8)-C(7)-C(10) 123.6(3) C(9)-C(8)-C(7) 121.8(4) C(8)-C(9)-C(2) 122.0(4) O(3)-C(10)-O(4) 124.8(3) O(3)-C(10)-C(7) 116.5(3) O(4)-C(10)-C(7) 118.7(3) Symmetry transformations used to generate equivalent atoms: #1 x + 1, y + 2, z + 2 #2 x + 2, y + 1, z + 2 #3 x + 1/2, y + 3/2, z + 1/2 #4 x + 3/2, y 1/2, z + 3/2 #5 x + 3/2, y + 1/2, z + 3/2 #6 x + 1/2, y + 3/2, z 1/2 21

Table 11. Anisotropic displacement parameters (Å 2 10 3 ) for MOF-103 [the anisotropic displacement factor exponent takes the form: 2π 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ]] U 11 U 22 U 33 U 23 U 13 U 12 O(6) 147(6) 178(6) 34(3) 31(3) 19(3) 91(5) C(11) 181(11) 192(11) 114(8) 64(8) 97(9) 126(10) C(13) 106(7) 122(8) 52(5) 13(5) 3(5) 3(6) C(12) 225(16) 320(20) 113(10) 74(12) 16(10) 126(15) N(1) 141(7) 142(7) 47(4) 2(4) 17(4) 73(6) Zn(1) 15(1) 13(1) 18(1) 0(1) 1(1) 1(1) O(1) 26(1) 24(1) 34(2) 13(1) 2(1) 7(1) O(2) 27(2) 25(2) 40(2) 20(1) 6(1) 4(1) O(3) 23(1) 28(2) 42(2) 18(1) 6(1) 8(1) O(4) 23(1) 22(1) 31(2) 11(1) 0(1) 1(1) O(5) 16(1) 33(2) 32(2) 1(1) 4(1) 3(1) C(1) 24(2) 18(2) 29(2) 4(2) 5(2) 2(2) C(2) 21(2) 18(2) 31(2) 10(2) 1(2) 1(2) C(3) 22(2) 29(2) 39(2) 15(2) 8(2) 4(2) C(4) 35(3) 58(3) 85(4) 44(3) 24(3) 15(2) C(5) 31(3) 58(3) 96(4) 55(3) 28(3) 19(2) C(6) 20(2) 27(2) 40(3) 13(2) 5(2) 3(2) C(7) 20(2) 18(2) 28(2) 6(2) 0(2) 0(2) C(8) 23(2) 27(2) 41(3) 13(2) 9(2) 1(2) C(9) 17(2) 27(2) 47(3) 12(2) 6(2) 7(2) C(10) 22(2) 17(2) 28(2) 4(2) 1(2) 0(2) 22

Table 12. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å 2 10 3 ) for MOF-103 x y z U(eq) H(11A) 7502 6132 5088 237 H(11B) 6643 6999 4900 237 H(11C) 6122 6305 4057 237 H(13) 6226 5495 6419 112 H(12A) 3100 7156 5295 331 H(12B) 2167 6316 5496 331 H(12C) 2738 6541 4327 331 H(5) 14638 4478 8947 40 H(5') 14981 4953 8548 40 H(4A) 4789 7184 9262 70 H(4B) 4027 6614 8264 70 H(5A) 3242 7768 7200 73 H(5B) 3996 8337 8199 73 H(8) 9930 8054 6341 51(10) H(9) 10704 6929 7334 51(10) 23

X-Ray Crystallography of MOF-104. A colorless, plate crystal (0.38 0.21 0.16 mm) of MOF-104 was coated with Paratone N hydrocarbon oil and mounted on a standard Bruker SMART CCD-based x-ray diffractometer equipped with a normal focus Motarget x-ray tube (λ = 0.71073 Å). The x-ray intensities were measured at 168(2) K. Data frames were collected with a scan width of 0.3 in ω with an exposure time of 10 s per frame. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm [SAINT: SAX Area-Detector Integration Program, V. 4.024 (1995) Siemens Industrial Automation, Madison, WI]. The integration of the data yielded a total of 5,460 reflections to a maximum 2θ value of 52.10 of which 2,088 were independent and 1,502 were greater than 3σ(I). The final cell constants were determined from a least-squares refinement based on the measured positions of 2,522 reflections in the range of 3.00 < 2θ < 46.00. Absorption correction was applied for the integrated intensity data by SADABS. The structure was solved by direct methods and the subsequent difference Fourier methods. Refinement processes were carried out with the TEXAN software package [TEXAN Crystal Structure Analysis Package, Molecular Structure Corporation (1985 & 1992)], using the centrosymmetric space group C2/m with Z = 2 for the formula. All nonhydrogen atoms of the framework were refined anisotropically. The remaining nonhydrogen atoms were refined isotropically. All hydrogen atoms were also included with ideal geometry. Final full matrix least-squares refinement converged to R = 0.058 (I > 3σ(I)) and Rw = 0.069 with GOF = 2.38. 24

Fig. 5. ORTEP drawing of MOF-104. 25

Table 13. Crystal data and structure refinement for MOF-104 Identification code MOF-104 Empirical formula C44 H50 N4 O12 Cl2 Zn2 Formula weight 1028.56 Temperature 168(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group C2/m Unit cell dimensions a = 13.7877(4) Å α= 90.0. b = 16.6254(5) Å β= 112.364(1). c = 10.6179(4) Å γ = 90.0. Volume 2250.83(12) Å 3 Z 2 Density (calculated) 1.518 Mg/m 3 Absorption coefficient 1.251 mm 1 F(000) 900 Crystal size 0.38 0.21 0.16 mm 3 Theta range for data collection to 26.05. Index ranges 0<=h<=16, 19<=k<=20, 12<=l<=11 Reflections collected 5460 Independent reflections 2088 [R(int) = 0.035] Absorption correction SADABS Max. and min. transmission 0.62 and 0.85 Refinement method Full-matrix least-squares Data/restraints/parameters 1502/0/138 Goodness-of-fit 2.38 Residuals: R; Rw; Rall 0.058; 0.069; 0.079 Largest diff. peak and hole 0.95 and 0.54 e.å 3 26

Table 14. Positional parameters and B(eq) for MOF-104 atom x y z B(eq) Zn(1) 0.04355(9) 0.5000 0.14864(11) 1.66(2) Cl(1) 0.4071(14) 0.3351(12) 0.639(2) 10.3(6) Cl(2) 0.3822(12) 0.2640(11) 0.6786(14) 8.0(4) O(1) 0.1376(4) 0.4141(3) 0.1225(5) 3.26(12) O(2) 0.0720(4) 0.4154(3).1033(5) 3.56(13) O(3) 0.0901(5) 0.5000 0.3514(6) 2.38(16) N(1) 0.0942(8) 0.4236(7) 0.5350(11) 2.6(2) C(1) 0.1313(5) 0.3884(4) 0.0087(7) 2.27(16) C(2) 0.1969(5) 0.3172(4) 0.0063(7) 2.27(16) C(3) 0.2978(6) 0.2866(4) 0.1212(7) 3.33(18) C(4) 0.3474(5) 0.2704(4) 0.0135(8) 3.2(2) C(5) 0.2478(6) 0.3007(4).0995(7) 3.1(2) C(6) 0.0593(10) 0.4365(8) 0.4002(13) 2.3(3) C(7) 0.1713(10) 0.4742(7) 0.6302(13) 2.9(3) C(8) 0.0559(12) 0.3477(9) 0.5809(15) 4.0(3) C(9) 0.442(3) 0.527(2).134(4) 7.1(11) C(10) 0.4556(16) 0.5000.033(2) 3.9(5) C(11) 0.3540(8) 0.5000 0.0106(12) 3.2(2) C(12) 0.3828(11) 0.5000 0.0971(15) 5.8(3) C(13) 0.227(2) 0.1640(17) 0.560(3) 7.5(7) C(14) 0.270(2) 0.2004(15) 0.582(2) 4.7(5) C(15) 0.318(3) 0.225(2) 0.624(3) 4.2(6) C(16) 0.2500 0.2500 0.5000 6.9(6) C(17) 0.328(3) 0.295(2) 0.580(4) 6.8(9) C(18) 0.3856(17) 0.3022(15) 0.644(2) 2.9(3) C(19) 0.348(2) 0.3559(15) 0.521(3) 7.8(6) H(1) 0.3322 0.3120 0.2070 4.0000 H(2) 0.4167 0.2847 0.0237 4.0000 H(3) 0.2458 0.3365.1704 4.0000 27

Table 15. Bond lengths (Å) and angles ( ) for MOF-104 Zn(1) Zn(1) 2.919(2) 56503 C(3) C(4) 1.562(9) 1 Zn(1) O(1) 2.018(4) 1 C(3) C(5) 1.56(1) 7 Zn(1) O(1) 2.018(4) 56502 C(4) C(5) 1.524(9) 1 Zn(1) O(2) 2.040(5) 4 C(7) C(7) 0.86(2) 56502 Zn(1) O(2) 2.040(5) 56503 C(8) C(8) 1.82(3) 55604 Zn(1) O(3) 1.999(6) 1 C(9) C(9) 0.91(7) 56502 Cl(1) Cl(2) 1.34(2) 1 C(9) C(10) 1.11(4) 1 Cl(1) C(17) 1.23(4) 1 C(10) C(10) 1.16(4) 66503 Cl(1) C(18) 0.64(2) 1 C(10) C(11) 1.64(2) 1 Cl(1) C(19) 1.26(3) 1 C(11) C(12) 0.85(1) 1 Cl(2) C(14) 1.83(3) 1 C(13) C(14) 0.82(3) 1 Cl(2) C(15) 1.07(3) 1 C(13) C(15) 1.55(4) 1 Cl(2) C(16) 2.08(2) 1 C(13) C(16) 1.64(3) 1 Cl(2) C(17) 1.15(4) 1 C(13) C(17) 1.55(5) 55607 Cl(2) C(18) 0.74(2) 1 C(13) C(19) 1.12(3) 55607 O(1) C(1) 1.254(7) 1 C(14) C(15) 0.76(3) 1 O(2) C(1) 1.243(7) 1 C(14) C(16) 1.15(2) 1 O(3) C(6) 1.32(1) 1 C(14) C(17) 1.76(5) 1 O(3) C(6) 1.32(1) 56502 C(14) C(17) 1.74(4) 55607 N(1) C(6) 1.34(2) 1 C(14) C(19) 1.84(4) 55607 N(1) C(7) 1.43(2) 1 C(15) C(16) 1.36(3) 1 N(1) C(8) 1.52(2) 1 C(15) C(17) 1.28(4) 1 C(1) C(2) 1.497(8) 1 C(15) C(18) 1.55(4) 1 C(2) C(3) 1.546(9) 1 C(16) C(17) 1.32(4) 1 C(2) C(4) 1.562(9) 7 C(16) C(17) 1.32(4) 55607 C(2) C(5) 1.558(8) 1 C(17) C(18) 0.84(4) 1 28

Table 16. Anisotropic displacement parameters (Å 2 ) for MOF-104 U 11 U 22 U 33 U 23 U 13 U 12 Zn(1) 0.0225(6) 0.0197(6) 0.0255(6) 0.0000 0.0145(5) 0.0000 O(1) 0.049(3) 0.040(3) 0.041(3) 0.023(3) 0.025(3) 0.003(3) O(2) 0.044(3) 0.049(3) 0.040(3) 0.030(3) 0.013(3).003(3) O(3) 0.034(4) 0.036(4) 0.024(4) 0.0000 0.015(3) 0.0000 C(1) 0.026(4) 0.021(4) 0.043(5) 0.001(3) 0.017(4) 0.000(3) C(2) 0.029(4) 0.024(4) 0.038(4) 0.009(3) 0.019(3).002(3) C(3) 0.037(4) 0.040(5) 0.048(5) 0.019(4) 0.015(4).008(4) C(4) 0.027(4) 0.025(4) 0.082(6) 0.006(3) 0.033(4) 0.000(4) C(5) 0.050(5) 0.032(4) 0.053(5) 0.020(4) 0.038(4) 0.013(4) 29

X-Ray Crystallography of MOF-105. A colorless blade-like crystal (0.20 0.10 0.08 mm) of MOF-105 was coated with a light hydrocarbon-based inert oil and mounted on a standard Bruker SMART APEX CCD-based x-ray diffractometer equipped with a normal focus Mo-target x-ray tube (λ = 0.71073 Å). The x-ray intensities were measured at 158(2) K. Data frames were collected with a scan width of 0.3 in ω and phi with an exposure time of 30 s per frame. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm [SAINT PLUS, V. 6.01, Bruker Analytical X-ray, Madison, WI]. The integration of the data yielded a total of 16,114 reflections to a maximum 2θ value of 52.84, of which 3,500 were independent and 2,280 were greater than 2σ(I). The final cell constants (Table 1) were based on xyz centroids of 3,438 reflections above 10σ(I). Analysis of the data showed negligible decay during data collection. Absorption correction was applied for the integrated intensity data by SADABS. The structure was solved by direct methods and the subsequent difference Fourier methods. Refinement processes were carried out with the Bruker SHELXTL (Version 5.10) software package, using the centrosymmetric space group P2 1 /c with Z = 2 for the formula. The axial positions of the copper atoms were coordinated with DMF molecules which filled the void space without guest molecules. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were also included with ideal geometry. Final full matrix least-squares refinement converged to R1 = 0.0412 (I > 2σ(I)) and wr2 = 0.0945 (all data) with GOF = 0.955. Additional details are presented in the following table. 30

Fig. 6. ORTEP drawing of MOF-105. 31

Table 17. Crystal data and structure refinement for MOF-105 Identification code MOF-105 Empirical formula C33 H33 N3 O11 Zn2 Formula weight 798.36 Temperature 158(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2(1)/c Unit cell dimensions a = 8.130(2) Å α= 90. b = 16.444(5) Å β= 92.127(5). c = 12.807(4) Å γ = 90. Volume 1711.1(9) Å 3 Z 2 Density (calculated) 1.511 Mg/m 3 Absorption coefficient 1.465 mm 1 F(000) 800 Crystal size 0.08 0.10 0.20 mm 3 Theta range for data collection 2.02 to 26.42. Index ranges 10<=h<=10, 20<=k<=20, 15<=l<=16 Reflections collected 16114 Independent reflections 3500 [R(int) = 0.0729] Completeness to theta = 26.42 99.7 % Absorption correction SADABS Max. and min. transmission 0.914 and 0.496 Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 3500/0/198 Goodness-of-fit on F 2 0.955 Final R indices [I>2sigma(I)] R1 = 0.0412, wr2 = 0.0840 R indices (all data) R1 = 0.0819, wr2 = 0.0945 Extinction coefficient 0.0006(3) Largest diff. peak and hole 0.414 and 0.493 e.å 3 32

Table 18. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å 2 10 3 ) for MOF-105 [U(eq) is defined as one-third of the trace of the orthogonalized U ij tensor] x y z U(eq) Zn(1) 3729(1) 5033(1) 790(1) 20(1) O(1) 5364(3) 4263(2) 1534(2) 33(1) O(2) 7258(3) 4218(2) 314(2) 34(1) O(3) 12822(3) 918(1) 4955(2) 32(1) O(4) 14717(3) 961(1) 3728(2) 33(1) O(5) 2093(3) 5145(1) 1886(2) 27(1) C(1) 6720(5) 4041(2) 1191(3) 27(1) C(2) 7807(4) 3520(2) 1890(2) 23(1) C(3) 7149(4) 3125(2) 2775(3) 26(1) C(4) 8087(4) 2621(2) 3388(3) 26(1) C(5) 9761(4) 2486(2) 3172(2) 22(1) C(6) 10773(4) 1937(2) 3768(2) 24(1) C(7) 12369(4) 1798(2) 3521(2) 25(1) C(8) 13057(4) 2220(2) 2675(3) 28(1) C(9) 12131(4) 2764(2) 2094(3) 28(1) C(10) 10458(4) 2909(2) 2321(2) 24(1) C(11) 9437(4) 3423(2) 1692(3) 25(1) C(12) 13385(4) 1178(2) 4110(3) 26(1) C(13) 2195(4) 5683(2) 2576(3) 28(1) N(1) 1200(4) 5732(2) 3360(2) 33(1) C(15) 1447(5) 6332(2) 4201(3) 43(1) C(14) 101(6) 5140(3) 3452(4) 74(2) 33

Table 19. Bond lengths (Å) and angles ( ) for MOF-105 Zn(1)-O(5) 1.978(2) Zn(1)-O(3)#1 2.018(2) Zn(1)-O(2)#2 2.021(2) Zn(1)-O(1) 2.045(2) Zn(1)-O(4)#3 2.061(2) Zn(1)-Zn(1)#2 2.9473(9) O(1)-C(1) 1.256(4) O(2)-C(1) 1.254(4) O(2)-Zn(1)#2 2.021(2) O(3)-C(12) 1.266(4) O(3)-Zn(1)#4 2.018(2) O(4)-C(12) 1.257(4) O(4)-Zn(1)#5 2.061(2) O(5)-C(13) 1.251(4) C(1)-C(2) 1.502(4) C(2)-C(11) 1.368(4) C(2)-C(3) 1.429(4) C(3)-C(4) 1.357(4) C(4)-C(5) 1.416(5) C(5)-C(6) 1.424(4) C(5)-C(10) 1.428(4) C(6)-C(7) 1.366(4) C(7)-C(8) 1.419(4) C(7)-C(12) 1.498(4) C(8)-C(9) 1.370(4) C(9)-C(10) 1.422(5) C(10)-C(11) 1.415(4) C(13)-N(1) 1.316(4) N(1)-C(14) 1.445(5) N(1)-C(15) 1.469(4) O(5)-Zn(1)-O(3)#1 101.91(10) O(5)-Zn(1)-O(2)#2 100.34(9) O(3)#1-Zn(1)-O(2)#2 88.47(10) O(5)-Zn(1)-O(1) 99.78(10) O(3)#1-Zn(1)-O(1) 89.24(10) O(2)#2-Zn(1)-O(1) 159.79(10) O(5)-Zn(1)-O(4)#3 97.98(9) O(3)#1-Zn(1)-O(4)#3 160.09(10) O(2)#2-Zn(1)-O(4)#3 88.90(10) O(1)-Zn(1)-O(4)#3 86.46(10) O(5)-Zn(1)-Zn(1)#2 176.14(7) O(3)#1-Zn(1)-Zn(1)#2 81.92(7) O(2)#2-Zn(1)-Zn(1)#2 79.16(7) O(1)-Zn(1)-Zn(1)#2 80.64(7) O(4)#3-Zn(1)-Zn(1)#2 78.20(7) C(1)-O(1)-Zn(1) 125.5(2) C(1)-O(2)-Zn(1)#2 128.7(2) C(12)-O(3)-Zn(1)#4 125.4(2) C(12)-O(4)-Zn(1)#5 128.4(2) C(13)-O(5)-Zn(1) 122.6(2) O(2)-C(1)-O(1) 125.8(3) O(2)-C(1)-C(2) 116.6(3) O(1)-C(1)-C(2) 117.5(3) C(11)-C(2)-C(3) 119.2(3) C(11)-C(2)-C(1) 120.6(3) C(3)-C(2)-C(1) 120.2(3) C(4)-C(3)-C(2) 121.2(3) C(3)-C(4)-C(5) 120.4(3) C(4)-C(5)-C(6) 122.3(3) C(4)-C(5)-C(10) 119.0(3) C(6)-C(5)-C(10) 118.7(3) C(7)-C(6)-C(5) 121.1(3) C(6)-C(7)-C(8) 120.0(3) C(6)-C(7)-C(12) 120.5(3) C(8)-C(7)-C(12) 119.4(3) C(9)-C(8)-C(7) 120.6(3) 34

Table 19 (continued) C(8)-C(9)-C(10) 120.6(3) C(11)-C(10)-C(9) 121.9(3) C(11)-C(10)-C(5) 119.0(3) C(9)-C(10)-C(5) 118.9(3) C(2)-C(11)-C(10) 121.0(3) O(4)-C(12)-O(3) 125.5(3) O(4)-C(12)-C(7) 117.7(3) O(3)-C(12)-C(7) 116.8(3) O(5)-C(13)-N(1) 123.7(3) C(13)-N(1)-C(14) 119.6(3) C(13)-N(1)-C(15) 122.0(3) C(14)-N(1)-C(15) 118.2(3) Symmetry transformations used to generate equivalent atoms: #1 x 1, y + 1/2, z 1/2 #2 x + 1, y + 1, z #3 x + 2, y + 1/2, z + 1/2 #4 x + 1, y + 1/2, z + 1/2 #5 x + 2, y 1/2, z + 1/2 35

Table 20. Anisotropic displacement parameters (Å 2 10 3 ) for MOF-105 [the anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ]] U 11 U 22 U 33 U 23 U 13 U 12 Zn(1) 20(1) 22(1) 17(1) 0(1) 4(1) 0(1) O(1) 29(2) 42(2) 27(1) 3(1) 7(1) 12(1) O(2) 34(2) 40(2) 28(1) 11(1) 4(1) 8(1) O(3) 37(2) 34(1) 24(1) 5(1) 2(1) 12(1) O(4) 28(2) 35(1) 35(1) 9(1) 1(1) 11(1) O(5) 26(1) 34(1) 23(1) 6(1) 2(1) 1(1) C(1) 31(2) 22(2) 27(2) 2(2) 10(2) 1(2) C(2) 24(2) 23(2) 21(2) 2(1) 5(1) 3(2) C(3) 22(2) 28(2) 29(2) 3(2) 2(2) 1(2) C(4) 29(2) 29(2) 21(2) 3(2) 1(1) 0(2) C(5) 25(2) 21(2) 18(2) 1(1) 2(1) 1(1) C(6) 26(2) 24(2) 21(2) 1(1) 3(2) 1(2) C(7) 29(2) 21(2) 22(2) 1(1) 8(2) 1(1) C(8) 23(2) 28(2) 32(2) 4(2) 5(2) 3(2) C(9) 27(2) 28(2) 28(2) 8(2) 1(2) 1(2) C(10) 27(2) 24(2) 20(2) 2(1) 5(1) 0(2) C(11) 29(2) 23(2) 23(2) 3(1) 4(2) 4(2) C(12) 23(2) 22(2) 32(2) 1(2) 9(2) 1(2) C(13) 30(2) 30(2) 25(2) 6(2) 1(2) 2(2) C(15) 56(3) 38(2) 34(2) 10(2) 7(2) 3(2) C(14) 80(4) 83(4) 62(3) 34(3) 42(3) 38(3) 36

Table 21. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å 2 10 3 ) for MOF-105 x y z U(eq) H(3) 6033 3216 2938 46(3) H(4) 7618 2356 3966 46(3) H(6) 10330 1662 4347 46(3) H(8) 14170 2125 2510 46(3) H(9) 12611 3046 1535 46(3) H(11) 9891 3705 1122 46(3) H(13) 3040 6080 2530 46(3) H(15A) 2227 6748 3985 46(3) H(15B) 1885 6059 4832 46(3) H(15C) 393 6589 4348 46(3) H(14A) 650 5055 2766 46(3) H(14B) 902 5339 3945 46(3) H(14C) 367 4625 3707 46(3) 37

X-Ray Crystallography of MOF-106. A yellow rod crystal (0.32 0.17 0.13 mm) of MOF-106 was coated with a light hydrocarbon-based inert oil and mounted on a standard Bruker SMART APEX CCD-based x-ray diffractometer equipped with a normal focus Mo-target x-ray tube (λ = 0.71073 Å). The x-ray intensities were measured at 153(2) K. Data frames were collected with a scan width of 0.3 in ω and phi with an exposure time of 30 s per frame. The frames were integrated with the Bruker SAINT software package with a narrow frame algorithm [SAINT PLUS, V. 6.01, Bruker Analytical X-ray, Madison, WI]. The integration of the data yielded a total of 13,081 reflections to a maximum 2θ value of 56.62, of which 5,458 were independent and 3,608 were greater than 2σ(I). The final cell constants (Table 1) were based on xyz centroids of 1,707 reflections above 10σ(I). Analysis of the data showed negligible decay during data collection. Absorption correction was not applied for the integrated intensity data. The structure was solved by direct methods and the subsequent difference Fourier methods. Refinement processes were carried out with the Bruker SHELXTL (Version 5.10) software package [Sheldrick, G. M. (1997) SHELXTL, V. 5.10 (Bruker Analytical X-ray, Madison, WI)], using the centrosymmetric space group C2/c with Z = 4 for the formula. There were two independent half Cl 2 BDC links and a copper atom in general positions. The axial positions of the copper atoms were coordinated with DMF molecules. Two DMF and a water molecules were included in the pore as guests. The water (O1W) and one of two DMF molecules shared the same site with partial occupancies. The oxygen atom of the disordered DMF was disordered over two sites with O7 and O7. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were also included with ideal geometry. Final full-matrix least-squares refinement converged to R1 = 0.0966 (I > 2σ(I)) and wr2 = 0.2002 (all data) with GOF = 1.110. Additional details are presented in the following table. 38

Fig. 7. ORTEP drawing of MOF-106. 39

Table 22. Crystal data and structure refinement for MOF-106 Identification code MOF-106 Empirical formula C44.80 H53.75 Fe2 N5.60 O14 Formula weight 1006.38 Temperature 153(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group C2/c Unit cell dimensions a = 27.124(4) Å α= 90. b = 15.270(2) Å β= 94.604(2). c = 12.0109(17) Å γ = 90. Volume 4958.7(12) Å 3 Z 4 Density (calculated) 1.391 Mg/m 3 Absorption coefficient 0.658 mm 1 F(000) 2103 Crystal size 0.321 0.169 0.134 mm 3 Theta range for data collection 1.51 to 28.31. Index ranges 36<=h<=20, 19<=k<=20, 15<=l<=15 Reflections collected 13081 Independent reflections 5458 [R(int) = 0.0614] Completeness to theta = 28.31 88.5 % Absorption correction None Refinement method Full-matrix least-squares on F 2 Data/restraints/parameters 5458/0/293 Goodness-of-fit on F 2 1.110 Final R indices [I>2sigma(I)] R1 = 0.0966, wr2 = 0.1791 R indices (all data) R1 = 0.1495, wr2 = 0.2002 Largest diff. peak and hole 0.834 and 0.644 e.å 3 40

Table 23. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å 2 10 3 ) for MOF-106 [U(eq) is defined as one-third of the trace of the orthogonalized U ij tensor] x y z U(eq) Fe(1) 2727(1) 2483(1) 1089(1) 16(1) O(1) 2263(2) 1205(3) 775(4) 35(1) O(2) 2609(2) 1175(3) 963(3) 30(1) O(3) 3350(1) 2280(3) 153(3) 33(1) O(4) 3228(1) 2628(3) 2475(3) 26(1) O(5) 2019(1) 2636(3) 1557(3) 25(1) O(6) 646(2) 759(5) 865(5) 78(2) N(1) 3959(2) 2988(4) 3371(4) 32(1) N(2) 894(2) 573(4) 967(5) 44(2) C(1) 2435(2) 803(4) 75(5) 21(1) C(2) 2444(2) 169(3) 48(5) 21(1) C(3) 2314(2) 628(4) 921(5) 24(1) C(4) 2336(2) 1528(4) 946(5) 25(1) C(5) 2495(2) 2015(3) 3(5) 19(1) C(6) 2612(2) 1554(4) 992(5) 21(1) C(7) 2590(2) 643(4) 1021(5) 24(1) C(8) 1647(2) 2746(3) 879(4) 20(1) C(9) 1162(2) 2920(4) 1361(4) 20(1) C(10) 739(3) 3065(7) 689(6) 64(3) C(11) 291(3) 3169(7) 1135(6) 72(3) C(12) 244(2) 3144(4) 2262(5) 24(1) C(13) 667(2) 3044(6) 2926(5) 56(2) C(14) 1124(2) 2927(6) 2493(5) 51(2) C(15) 3671(2) 2816(4) 2470(5) 30(1) C(16) 3772(3) 2980(7) 4456(6) 67(3) C(17) 4489(3) 3165(6) 3316(7) 63(3) C(18) 1301(3) 452(6) 1814(7) 60(2) C(19) 966(3) 634(6) 99(7) 60(2) C(20) 404(2) 699(6) 1369(4) 72(3) N(3) 3977(2) 529(3) 2913(4) 56(2) C(23) 3528(2) 437(3) 3425(4) 66(3) 41

Table 23 (continued) C(22) 4409(2) 748(3) 3562(4) 101(5) C(21) 3960(2) 366(3) 1715(4) 96(5) O(7) 4417(2) 936(3) 4471(4) 79(5) O(7') 4784(2) 860(3) 3574(4) 98(6) O(1W) 4112(2) 216(3) 4654(4) 82(10) 42

Table 24. Bond lengths (Å) and angles ( ) for MOF-106 Fe(1)-O(2) 2.026(4) Fe(1)-O(1)#1 2.040(4) Fe(1)-O(5) 2.059(4) Fe(1)-O(4) 2.073(4) Fe(1)-O(3) 2.125(4) Fe(1)-Fe(1)#1 2.8022(14) O(1)-C(1) 1.248(7) O(1)-Fe(1)#1 2.040(4) O(2)-C(1) 1.266(7) O(3)-C(8)#1 1.241(6) O(4)-C(15) 1.236(7) O(5)-C(8) 1.256(6) O(6)-C(19) 1.227(9) N(1)-C(15) 1.310(7) N(1)-C(16) 1.436(9) N(1)-C(17) 1.469(8) N(2)-C(19) 1.314(10) N(2)-C(18) 1.453(9) N(2)-C(20) 1.462(7) C(1)-C(2) 1.485(7) C(2)-C(3) 1.379(8) C(2)-C(7) 1.404(8) C(3)-C(4) 1.376(8) C(4)-C(5) 1.400(8) C(5)-C(6) 1.395(8) C(5)-C(5)#2 1.482(9) C(6)-C(7) 1.392(8) C(8)-C(9) 1.503(7) C(9)-C(10) 1.365(8) C(9)-C(14) 1.372(8) C(10)-C(11) 1.376(9) C(11)-C(12) 1.370(9) C(12)-C(13) 1.352(8) C(12)-C(12)#3 1.484(11) C(13)-C(14) 1.391(9) N(3)-C(22) 1.3944 N(3)-C(23) 1.4142 N(3)-C(21) 1.4577 C(22)-O(7') 1.0308 C(22)-O(7) 1.1281 O(2)-Fe(1)-O(1)#1 163.44(15) O(2)-Fe(1)-O(5) 89.24(17) O(1)#1-Fe(1)-O(5) 87.98(18) O(2)-Fe(1)-O(4) 104.77(16) O(1)#1-Fe(1)-O(4) 91.53(16) O(5)-Fe(1)-O(4) 109.52(15) O(2)-Fe(1)-O(3) 86.82(18) O(1)#1-Fe(1)-O(3) 91.30(19) O(5)-Fe(1)-O(3) 163.71(14) O(4)-Fe(1)-O(3) 86.77(15) O(2)-Fe(1)-Fe(1)#1 83.86(12) O(1)#1-Fe(1)-Fe(1)#1 79.62(12) O(5)-Fe(1)-Fe(1)#1 84.39(10) O(4)-Fe(1)-Fe(1)#1 163.40(12) O(3)-Fe(1)-Fe(1)#1 79.48(11) C(1)-O(1)-Fe(1)#1 128.7(4) C(1)-O(2)-Fe(1) 123.5(4) C(8)#1-O(3)-Fe(1) 127.1(4) C(15)-O(4)-Fe(1) 126.5(4) C(8)-O(5)-Fe(1) 123.9(3) C(15)-N(1)-C(16) 121.1(5) C(15)-N(1)-C(17) 121.5(6) C(16)-N(1)-C(17) 117.4(6) C(19)-N(2)-C(18) 121.7(7) C(19)-N(2)-C(20) 121.5(6) C(18)-N(2)-C(20) 116.6(6) 43

Table 24 (continued) O(1)-C(1)-O(2) 123.9(5) O(1)-C(1)-C(2) 118.6(6) O(2)-C(1)-C(2) 117.5(5) C(3)-C(2)-C(7) 118.4(5) C(3)-C(2)-C(1) 121.5(6) C(7)-C(2)-C(1) 120.1(5) C(4)-C(3)-C(2) 121.2(5) C(3)-C(4)-C(5) 121.5(5) C(6)-C(5)-C(4) 117.4(4) C(6)-C(5)-C(5)#2 120.4(7) C(4)-C(5)-C(5)#2 122.1(7) C(7)-C(6)-C(5) 121.2(5) C(6)-C(7)-C(2) 120.2(5) O(3)#1-C(8)-O(5) 125.0(5) O(3)#1-C(8)-C(9) 117.9(5) O(5)-C(8)-C(9) 117.1(5) C(10)-C(9)-C(14) 117.3(5) C(10)-C(9)-C(8) 121.3(5) C(14)-C(9)-C(8) 121.4(5) C(9)-C(10)-C(11) 120.9(6) C(12)-C(11)-C(10) 122.5(6) C(13)-C(12)-C(11) 116.3(5) C(13)-C(12)-C(12)#3 121.0(7) C(11)-C(12)-C(12)#3 122.5(7) C(12)-C(13)-C(14) 122.2(6) C(9)-C(14)-C(13) 120.7(6) O(4)-C(15)-N(1) 124.0(6) O(6)-C(19)-N(2) 126.1(8) C(22)-N(3)-C(23) 119.7 C(22)-N(3)-C(21) 123.5 C(23)-N(3)-C(21) 116.9 O(7')-C(22)-N(3) 146.3 O(7)-C(22)-N(3) 123.5 Symmetry transformations used to generate equivalent atoms: #1 x + 1/2, y + 1/2, z #2 x + 1/2, y 1/2, z #3 x, y, z + 1/2 44

Table 25. Anisotropic displacement parameters (Å 2 10 3 ) for MOF-106 [the anisotropic displacement factor exponent takes the form: 2π 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ]] U 11 U 22 U 33 U 23 U 13 U 12 Fe(1) 18(1) 13(1) 17(1) 2(1) 3(1) 1(1) O(1) 50(3) 24(2) 31(2) 11(2) 8(2) 1(2) O(2) 52(3) 14(2) 25(2) 1(2) 1(2) 1(2) O(3) 23(2) 59(3) 18(2) 3(2) 5(2) 7(2) O(4) 24(2) 27(2) 25(2) 4(2) 1(2) 1(2) O(5) 20(2) 34(3) 22(2) 6(2) 3(2) 0(2) O(6) 68(4) 108(6) 57(4) 4(4) 16(3) 17(4) N(1) 19(3) 48(3) 27(3) 5(2) 4(2) 4(2) N(2) 35(3) 46(4) 50(4) 2(3) 4(3) 6(3) C(1) 12(3) 21(3) 32(3) 2(3) 12(2) 1(2) C(2) 23(3) 14(2) 28(3) 0(3) 6(2) 1(2) C(3) 33(3) 18(3) 21(3) 4(2) 5(3) 4(3) C(4) 40(4) 18(3) 17(3) 2(2) 3(3) 6(3) C(5) 21(2) 14(2) 22(2) 3(3) 2(2) 1(3) C(6) 26(3) 18(3) 19(3) 1(2) 2(2) 3(2) C(7) 29(3) 22(3) 20(3) 4(2) 2(2) 0(2) C(8) 20(3) 21(3) 19(3) 1(2) 1(2) 1(2) C(9) 19(3) 20(3) 22(3) 0(2) 8(2) 1(2) C(10) 28(4) 147(9) 19(3) 7(4) 7(3) 27(5) C(11) 18(4) 172(10) 26(4) 13(5) 1(3) 22(5) C(12) 22(3) 24(3) 25(3) 1(2) 6(2) 0(2) C(13) 23(4) 126(8) 19(3) 12(4) 4(3) 1(4) C(14) 16(3) 113(7) 23(3) 16(4) 1(3) 6(4) C(15) 28(3) 41(4) 20(3) 2(3) 4(2) 1(3) C(16) 41(5) 127(9) 31(4) 5(5) 5(3) 19(5) C(17) 37(4) 101(7) 48(5) 13(5) 7(4) 19(5) C(18) 60(5) 64(6) 55(5) 15(4) 1(4) 4(4) C(19) 49(5) 69(6) 63(6) 9(5) 9(4) 10(4) C(20) 47(5) 85(7) 87(7) 23(6) 20(5) 8(5) N(3) 58(6) 40(5) 67(6) 8(4) 14(4) 8(4) C(23) 67(8) 59(7) 76(8) 1(6) 25(6) 8(6) C(22) 52(8) 69(9) 180(17) 25(10) 7(9) 5(7) C(21) 116(12) 75(9) 97(11) 1(8) 0(9) 36(9) 45