Mouvement brownien branchant avec sélection

Similar documents
Recent results on branching Brownian motion on the positive real axis. Pascal Maillard (Université Paris-Sud (soon Paris-Saclay))

The genealogy of branching Brownian motion with absorption. by Jason Schweinsberg University of California at San Diego

Critical branching Brownian motion with absorption. by Jason Schweinsberg University of California at San Diego

Yaglom-type limit theorems for branching Brownian motion with absorption. by Jason Schweinsberg University of California San Diego

Branching Brownian motion with selection

Hydrodynamics of the N-BBM process

A. Bovier () Branching Brownian motion: extremal process and ergodic theorems

Branching Brownian motion seen from the tip

Dynamics of the evolving Bolthausen-Sznitman coalescent. by Jason Schweinsberg University of California at San Diego.

Macroscopic quasi-stationary distribution and microscopic particle systems

Modern Discrete Probability Branching processes

Sharpness of second moment criteria for branching and tree-indexed processes

Erdős-Renyi random graphs basics

Necessary and sufficient conditions for the convergence of the consistent maximal displacement of the branching random walk

The Contour Process of Crump-Mode-Jagers Branching Processes

Slowdown in branching Brownian motion with inhomogeneous variance

Theory of Stochastic Processes 3. Generating functions and their applications

UPPER DEVIATIONS FOR SPLIT TIMES OF BRANCHING PROCESSES

Crump Mode Jagers processes with neutral Poissonian mutations

Spectral asymptotics for stable trees and the critical random graph

Resistance Growth of Branching Random Networks

The range of tree-indexed random walk

Asymptotic of the maximal displacement in a branching random walk

A slow transient diusion in a drifted stable potential

Infinitely iterated Brownian motion

Lecture 06 01/31/ Proofs for emergence of giant component

A Branching-selection process related to censored Galton-Walton. processes

Workshop on Stochastic Processes and Random Trees

A simple branching process approach to the phase transition in G n,p

Extrema of log-correlated random variables Principles and Examples

Stochastic Volatility and Correction to the Heat Equation

Introduction to self-similar growth-fragmentations

Almost sure asymptotics for the random binary search tree

Travelling-waves for the FKPP equation via probabilistic arguments

Continuous-state branching processes, extremal processes and super-individuals

Infinitely divisible distributions and the Lévy-Khintchine formula

Mandelbrot s cascade in a Random Environment

Solving the Poisson Disorder Problem

arxiv: v3 [math.pr] 10 Nov 2017

Critical percolation on networks with given degrees. Souvik Dhara

Stable and extended hypergeometric Lévy processes

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Brownian Web and Net, part II

Discrete random structures whose limits are described by a PDE: 3 open problems

Mandelbrot Cascades and their uses

14 Branching processes

GARCH processes continuous counterparts (Part 2)

Hitting Probabilities

9.2 Branching random walk and branching Brownian motions

De los ejercicios de abajo (sacados del libro de Georgii, Stochastics) se proponen los siguientes:

Convergence exponentielle uniforme vers la distribution quasi-stationnaire en dynamique des populations

A N-branching random walk with random selection

The Codimension of the Zeros of a Stable Process in Random Scenery

arxiv: v2 [math.pr] 25 Feb 2017

Connection to Branching Random Walk

arxiv:math.pr/ v1 17 May 2004

1 Independent increments

On the behavior of the population density for branching random. branching random walks in random environment. July 15th, 2011

From Individual-based Population Models to Lineage-based Models of Phylogenies

The parabolic Anderson model on Z d with time-dependent potential: Frank s works

arxiv: v1 [math.pr] 29 Sep 2016

Convergence to a single wave in the Fisher-KPP equation

Some functional (Hölderian) limit theorems and their applications (II)

The extremal process of branching Brownian motion

Decomposition of supercritical branching processes with countably many types

Mixing Times and Hitting Times

Reaction-Diffusion Equations In Narrow Tubes and Wave Front P

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Two viewpoints on measure valued processes

Elementary Applications of Probability Theory

Front Speeds, Cut-Offs, and Desingularization: A Brief Case Study

Some properties of the true self-repelling motion

Branching within branching: a general model for host-parasite co-evolution

arxiv: v2 [math.pr] 4 Jan 2016

Walsh Diffusions. Andrey Sarantsev. March 27, University of California, Santa Barbara. Andrey Sarantsev University of Washington, Seattle 1 / 1

Reflected Brownian Motion

Population growth: Galton-Watson process. Population growth: Galton-Watson process. A simple branching process. A simple branching process

1 Types of stochastic models

Random trees and branching processes

Asymptotic behaviour near extinction of continuous state branching processes

Mean-field dual of cooperative reproduction

Scale functions for spectrally negative Lévy processes and their appearance in economic models

The Λ-Fleming-Viot process and a connection with Wright-Fisher diffusion. Bob Griffiths University of Oxford

QUEUEING FOR AN INFINITE BUS LINE AND AGING BRANCHING PROCESS

A note on the extremal process of the supercritical Gaussian Free Field *

Branching processes. Chapter Background Basic definitions

Homework 3 posted, due Tuesday, November 29.

Some Tools From Stochastic Analysis

16. Working with the Langevin and Fokker-Planck equations

Brownian motion 18.S995 - L03 & 04

Handbook of Stochastic Methods

J. Stat. Mech. (2013) P01006

Course Notes. Part IV. Probabilistic Combinatorics. Algorithms

Bessel-like SPDEs. Lorenzo Zambotti, Sorbonne Université (joint work with Henri Elad-Altman) 15th May 2018, Luminy

Scaling exponents for certain 1+1 dimensional directed polymers

Kolmogorov Equations and Markov Processes

arxiv: v1 [math.pr] 13 Oct 2016

WXML Final Report: Chinese Restaurant Process

Uniformly Uniformly-ergodic Markov chains and BSDEs

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT September 24, Anomalous diffusion

Transcription:

Mouvement brownien branchant avec sélection Soutenance de thèse de Pascal MAILLARD effectuée sous la direction de Zhan SHI Jury Brigitte CHAUVIN, Francis COMETS, Bernard DERRIDA, Yueyun HU, Andreas KYPRIANOU, Zhan SHI Rapporteurs Andreas KYPRIANOU, Ofer ZEITOUNI Université Pierre et Marie Curie 11 octobre 2012

Thesis structure Introduction + 3 chapters: 1 The number of absorbed individuals in branching Brownian motion with a barrier 2 Branching Brownian motion with selection of the N right-most particles 3 A note on stable point processes occurring in branching Brownian motion Pascal MAILLARD Mouvement brownien branchant avec sélection 2 / 33

Thesis structure Introduction + 3 chapters: 1 The number of absorbed individuals in branching Brownian motion with a barrier 2 Branching Brownian motion with selection of the N right-most particles 3 A note on stable point processes occurring in branching Brownian motion In this presentation: Chapters 1 and 2. Pascal MAILLARD Mouvement brownien branchant avec sélection 2 / 33

Outline Introduction 1 Introduction 2 Branching Brownian motion with absorption 3 BBM with constant population size 4 Perspectives Pascal MAILLARD Mouvement brownien branchant avec sélection 3 / 33

Introduction Branching Brownian motion (BBM) Definition A particle performs standard Brownian motion started at a point x R. x position time Pascal MAILLARD Mouvement brownien branchant avec sélection 4 / 33

Introduction Branching Brownian motion (BBM) Definition A particle performs standard Brownian motion started at a point x R. With rate β, it branches, i.e. it dies and spawns L offspring (L being a random variable). ~exp(β) x position time Pascal MAILLARD Mouvement brownien branchant avec sélection 4 / 33

Introduction... Branching Brownian motion (BBM) Definition A particle performs standard Brownian motion started at a point x R. With rate β, it branches, i.e. it dies and spawns L offspring (L being a random variable). Each offspring repeats this process independently of the others. ~exp(β) x position time Pascal MAILLARD Mouvement brownien branchant avec sélection 4 / 33

Introduction... Branching Brownian motion (BBM) Definition A particle performs standard Brownian motion started at a point x R. With rate β, it branches, i.e. it dies and spawns L offspring (L being a random variable). Each offspring repeats this process independently of the others. A Brownian motion indexed by a tree. ~exp(β) x position time Pascal MAILLARD Mouvement brownien branchant avec sélection 4 / 33

Introduction... Branching Brownian motion (BBM) (2) Context An example of a multitype branching process (type space: R) ~exp(β) x position time Pascal MAILLARD Mouvement brownien branchant avec sélection 5 / 33

Introduction... Branching Brownian motion (BBM) (2) Context An example of a multitype branching process (type space: R) Discrete counterpart: branching random walk ~exp(β) x position time Pascal MAILLARD Mouvement brownien branchant avec sélection 5 / 33

Introduction... Branching Brownian motion (BBM) (2) Context An example of a multitype branching process (type space: R) Discrete counterpart: branching random walk Interpretations: Model for an asexual population undergoing mutation (position = fitness) Spin glass (with infinitely deep hierarchy) Directed polymer on a tree Prototype of a travelling wave ~exp(β) x position time Pascal MAILLARD Mouvement brownien branchant avec sélection 5 / 33

Introduction Branching Brownian motion (BBM) (3) We always suppose m := E[L] 1 > 0. Right-most particle Let R t be the position of the right-most particle. Then, as t, almost surely on the event of survival, R t t 2βm. Picture by Éric Brunet Pascal MAILLARD Mouvement brownien branchant avec sélection 6 / 33

Introduction Branching Brownian motion (BBM) (3) We always suppose m := E[L] 1 > 0. Right-most particle Let R t be the position of the right-most particle. Then, as t, almost surely on the event of survival, R t t 2βm. Convention We will henceforth set β = 1/(2m). Picture by Éric Brunet Pascal MAILLARD Mouvement brownien branchant avec sélection 6 / 33

BBM FKPP Introduction Let g : R [0, 1] be measurable. Define [ ] u(t, x) = E x g(x u (t)). u N t Then u satisfies the following partial differential equation: Fisher Kolmogorov Petrovskii Piskunov (FKPP) equation { t u = 1 2 2 x u + β(e[u L ] u) u(0, x) = g(x) (initial condition) The prototype of a parabolic PDE admitting travelling wave solutions. Pascal MAILLARD Mouvement brownien branchant avec sélection 7 / 33

Selection Introduction -x 0 position Two models of BBM with selection: y = -x + ct time... Pascal MAILLARD Mouvement brownien branchant avec sélection 8 / 33

Selection Introduction -x 0 position Two models of BBM with selection: y = -x + ct time 1 BBM with absorption: Let f (t) be a continuous function (the barrier). Kill an individual as soon as its position is less than f (t) (one-sided FKPP).... Pascal MAILLARD Mouvement brownien branchant avec sélection 8 / 33

Introduction Selection -x 0 position Two models of BBM with selection: y = -x + ct time 1 BBM with absorption: Let f (t) be a continuous function (the barrier). Kill an individual as soon as its position is less than f (t) (one-sided FKPP).... 2 BBM with constant population size (N-BBM): Fix N N. As soon as the number of individuals exceeds N, kill the left-most individuals until the population size equals N (noisy FKPP). Pascal MAILLARD Mouvement brownien branchant avec sélection 8 / 33

Outline Branching Brownian motion with absorption 1 Introduction 2 Branching Brownian motion with absorption Results Proof idea 3 BBM with constant population size 4 Perspectives Pascal MAILLARD Mouvement brownien branchant avec sélection 9 / 33

Branching Brownian motion with absorption Results Branching Brownian motion with absorption -x 0 position We take f (t) = x + ct (linear barrier). Vast literature, known results (sample): y = -x + ct time almost sure extinction c 1 (c = 1: critical case c > 1: supercritical case) growth rates for c < 1.... asymptotics for extinction probability for c = 1 ε, ε small We are interested in the number of absorbed individuals in the case c 1 (question raised by D. Aldous). Pascal MAILLARD Mouvement brownien branchant avec sélection 10 / 33

Branching Brownian motion with absorption Our results (critical case) Results Let Z x denote the number of individuals absorbed at the line x + ct. Theorem Assume that c = 1 and that E[L(log L) 2 ] <. For each x > 0, P(Z x > n) xe x, as n. n(log n) 2 If, furthermore, E[s L ] < for some s > 1, then P(Z x = δn + 1) where δ is the span of L 1. xe x δn 2 (log n) 2 as n, Pascal MAILLARD Mouvement brownien branchant avec sélection 11 / 33

Branching Brownian motion with absorption Results Our results (supercritical case) Theorem Assume that c > 1 and that E[s L ] < for some s > 1. Let λ c < λ c be the roots of the equation λ 2 2cλ + 1 = 0 and define d = λ c /λ c. There K = K (c, L) > 0, such that for all x > 0, P(Z x = δn + 1) K (eλcx e λcx ) n d+1 as n. Pascal MAILLARD Mouvement brownien branchant avec sélection 12 / 33

Other studies Branching Brownian motion with absorption Results Addario-Berry and Broutin (2011), Aïdékon (2010): Less precise tail estimates (c = 1). Aïdékon, Hu and Zindy (2012+): Similar results for branching random walk (c 1), with more explicit K. Pascal MAILLARD Mouvement brownien branchant avec sélection 13 / 33

Other studies Branching Brownian motion with absorption Results Addario-Berry and Broutin (2011), Aïdékon (2010): Less precise tail estimates (c = 1). Aïdékon, Hu and Zindy (2012+): Similar results for branching random walk (c 1), with more explicit K. In contrast to the above papers, our proofs are entirely analytic. Strategy: derive asymptotics on the generating function of Z x near its singularity 1 (following an idea of R. Pemantle s). Pascal MAILLARD Mouvement brownien branchant avec sélection 13 / 33

Branching Brownian motion with absorption Proof idea The number of absorbed individuals Theorem (Neveu, 1988) (Z x ) x 0 is a continuous-time Galton Watson process. The infinitesimal generating function a(s) = de[s Zx ]/dx admits the decomposition -y -x 0 position time a = ψ ψ 1,... where ψ is an FKPP travelling wave of speed c, i.e....... 1 2 ψ (s) cψ (s) + β(e[s L ] s) = 0,... and ψ(x) 1, as x. Pascal MAILLARD Mouvement brownien branchant avec sélection 14 / 33

Branching Brownian motion with absorption Tail asymptotics c = 1 Proof idea Follow from a Tauberian theorem and the following lemma: Lemma a (1 s) 1 s log 2 s, s 0. Pascal MAILLARD Mouvement brownien branchant avec sélection 15 / 33

Branching Brownian motion with absorption Proof idea Tail asymptotics c = 1 Follow from a Tauberian theorem and the following lemma: Lemma a (1 s) 1 s log 2 s, s 0. Proof of lemma: Solve two-dimensional ODE satisfied by (ψ, ψ) Use known asymptotic: 1 ψ(x) Cxe x as x. Pascal MAILLARD Mouvement brownien branchant avec sélection 15 / 33

Branching Brownian motion with absorption Proof idea Asymptotics on density (c 1) Derive asymptotics of a(s) near s = 1 in the complex plane and use transfer theorems by Flajolet and Odlyzko. Pascal MAILLARD Mouvement brownien branchant avec sélection 16 / 33

Branching Brownian motion with absorption Proof idea Asymptotics on density (c 1) Derive asymptotics of a(s) near s = 1 in the complex plane and use transfer theorems by Flajolet and Odlyzko. To this end, show that a(s) can be analytically extended to a region (r, ϕ), analyse its asymptotic behaviour near the point s = 1 inside (r, ϕ). Δ(r,φ) r 1 φ Pascal MAILLARD Mouvement brownien branchant avec sélection 16 / 33

Branching Brownian motion with absorption Proof idea Asymptotics on a(s) near s = 1 Theorem For every ϕ (0, π) there exists r > 1, such that a(s) possesses an analytical extension to (ϕ, r). Moreover, as 1 s 1 in (ϕ, r), the following holds. Pascal MAILLARD Mouvement brownien branchant avec sélection 17 / 33

Branching Brownian motion with absorption Proof idea Asymptotics on a(s) near s = 1 Theorem For every ϕ (0, π) there exists r > 1, such that a(s) possesses an analytical extension to (ϕ, r). Moreover, as 1 s 1 in (ϕ, r), the following holds. If c = 1, then K = K (L), such that a(1 s) = s + s log 1 s s log log ( 1 s Ks (log 1 + s )2 (log 1 + o s )2 s (log 1 s )2 ). Pascal MAILLARD Mouvement brownien branchant avec sélection 17 / 33

Branching Brownian motion with absorption Proof idea Asymptotics on a(s) near s = 1 Theorem For every ϕ (0, π) there exists r > 1, such that a(s) possesses an analytical extension to (ϕ, r). Moreover, as 1 s 1 in (ϕ, r), the following holds. If c = 1, then K = K (L), such that a(1 s) = s + s log 1 s s log log ( 1 s Ks (log 1 + s )2 (log 1 + o s )2 s (log 1 s )2 ). If c > 1, then K = K (c, L) 0 and a polynomial h(s), such that if d / N : a(1 s) = λ c s + h(s) + Ks d + o(s d ), if d N : a(1 s) = λ c s + h(s) + Ks d log s + o(s d ). Pascal MAILLARD Mouvement brownien branchant avec sélection 17 / 33

Branching Brownian motion with absorption Proof: Main idea Proof idea As before, write two-dimensional ODE satisfied by (ψ, ψ) in a subset of the complex plane. Changing coordinates leads to the classic Pascal MAILLARD Mouvement brownien branchant avec sélection 18 / 33

Branching Brownian motion with absorption Proof: Main idea Proof idea As before, write two-dimensional ODE satisfied by (ψ, ψ) in a subset of the complex plane. Changing coordinates leads to the classic Briot Bouquet equation zf (z) = λf (z) + pz +..., λ, p C. The set of solutions to this equation is known explicitly. Pascal MAILLARD Mouvement brownien branchant avec sélection 18 / 33

Branching Brownian motion with absorption Proof: Main idea Proof idea As before, write two-dimensional ODE satisfied by (ψ, ψ) in a subset of the complex plane. Changing coordinates leads to the classic Briot Bouquet equation zf (z) = λf (z) + pz +..., λ, p C. The set of solutions to this equation is known explicitly. Note. Major technical difficulty in the proofs: justifying the coordinate changes. Pascal MAILLARD Mouvement brownien branchant avec sélection 18 / 33

Outline BBM with constant population size 1 Introduction 2 Branching Brownian motion with absorption 3 BBM with constant population size Introduction Results 4 Perspectives Pascal MAILLARD Mouvement brownien branchant avec sélection 19 / 33

BBM with constant population size Introduction BBM with constant population size Recall: Fix N N. As soon as the number of individuals exceeds N, kill the left-most individuals until the population size equals N. Much harder than BBM with absorption: strong interaction between particles no exact description through differential equations Picture by Éric Brunet Pascal MAILLARD Mouvement brownien branchant avec sélection 20 / 33

BBM with constant population size Introduction BBM with constant population size Picture by Éric Brunet Recall: Fix N N. As soon as the number of individuals exceeds N, kill the left-most individuals until the population size equals N. Much harder than BBM with absorption: strong interaction between particles no exact description through differential equations Nevertheless: A fairly detailed heuristic picture due to physicists: Brunet and Derrida (1997-2004) with Mueller and Munier (2006-2007) Pascal MAILLARD Mouvement brownien branchant avec sélection 20 / 33

BBM with constant population size Introduction Heuristic picture of N-BBM (BDMM 06) Meta-stable state: speed c det N = 1 π 2 / log 2 N, empirical measure seen from the left-most particle approximately proportional to sin(πx/ log N)e x 1 (0,log N) (x), diameter log N. Pascal MAILLARD Mouvement brownien branchant avec sélection 21 / 33

BBM with constant population size Introduction Heuristic picture of N-BBM (BDMM 06) Meta-stable state: speed c det N = 1 π 2 / log 2 N, empirical measure seen from the left-most particle approximately proportional to sin(πx/ log N)e x 1 (0,log N) (x), diameter log N. After a time of order log 3 N, a particle breaks out and goes far to the right (close to a N = log N + 3 log log N), spawning O(N) descendants. Pascal MAILLARD Mouvement brownien branchant avec sélection 21 / 33

BBM with constant population size Introduction Heuristic picture of N-BBM (BDMM 06) Meta-stable state: speed c det N = 1 π 2 / log 2 N, empirical measure seen from the left-most particle approximately proportional to sin(πx/ log N)e x 1 (0,log N) (x), diameter log N. After a time of order log 3 N, a particle breaks out and goes far to the right (close to a N = log N + 3 log log N), spawning O(N) descendants. This leads to a shift (O(1)) of the whole system to the right. Pascal MAILLARD Mouvement brownien branchant avec sélection 21 / 33

BBM with constant population size Introduction Heuristic picture of N-BBM (BDMM 06) Meta-stable state: speed c det N = 1 π 2 / log 2 N, empirical measure seen from the left-most particle approximately proportional to sin(πx/ log N)e x 1 (0,log N) (x), diameter log N. After a time of order log 3 N, a particle breaks out and goes far to the right (close to a N = log N + 3 log log N), spawning O(N) descendants. This leads to a shift (O(1)) of the whole system to the right. Relaxation time of order log 2 N, then process repeats. Pascal MAILLARD Mouvement brownien branchant avec sélection 21 / 33

BBM with constant population size Introduction Heuristic picture of N-BBM (BDMM 06) Meta-stable state: speed c det N = 1 π 2 / log 2 N, empirical measure seen from the left-most particle approximately proportional to sin(πx/ log N)e x 1 (0,log N) (x), diameter log N. After a time of order log 3 N, a particle breaks out and goes far to the right (close to a N = log N + 3 log log N), spawning O(N) descendants. This leads to a shift (O(1)) of the whole system to the right. Relaxation time of order log 2 N, then process repeats. Pascal MAILLARD Mouvement brownien branchant avec sélection 21 / 33

BBM with constant population size Introduction Heuristic picture of N-BBM (BDMM 06) Meta-stable state: speed c det N = 1 π 2 / log 2 N, empirical measure seen from the left-most particle approximately proportional to sin(πx/ log N)e x 1 (0,log N) (x), diameter log N. After a time of order log 3 N, a particle breaks out and goes far to the right (close to a N = log N + 3 log log N), spawning O(N) descendants. This leads to a shift (O(1)) of the whole system to the right. Relaxation time of order log 2 N, then process repeats. Pascal MAILLARD Mouvement brownien branchant avec sélection 21 / 33

BBM with constant population size Introduction Heuristic picture of N-BBM (BDMM 06) Meta-stable state: speed c det N = 1 π 2 / log 2 N, empirical measure seen from the left-most particle approximately proportional to sin(πx/ log N)e x 1 (0,log N) (x), diameter log N. After a time of order log 3 N, a particle breaks out and goes far to the right (close to a N = log N + 3 log log N), spawning O(N) descendants. This leads to a shift (O(1)) of the whole system to the right. Relaxation time of order log 2 N, then process repeats. Real speed of the system is approximately c N = 1 π2 an 2 = cn det + 3π2 log log N + o(1) log 3, N and O(1/ log 3 N) fluctuations. Pascal MAILLARD Mouvement brownien branchant avec sélection 21 / 33

Main result BBM with constant population size Results Order the individuals according to position: X 1 (t) > X 2 (t) >... Define x α by (1 + x α )e xα = α. Pascal MAILLARD Mouvement brownien branchant avec sélection 22 / 33

Main result BBM with constant population size Results Order the individuals according to position: X 1 (t) > X 2 (t) >... Define x α by (1 + x α )e xα = α. Theorem Suppose E[L 2 ] < and at time 0, there are N particles distributed independently in (0, a N ) according to density proportional to sin(πx/a N )e x. Then, for every α (0, 1), ( XαN (t log 3 N) c N t log 3 N ) t 0 fidis = (L t + x α ) t 0. Here, (L t ) t 0 is a (pure-jump) Lévy process with L 0 = 0 and Lévy measure the image of π 2 x 2 1 x>0 dx by the map x log(1 + x). Pascal MAILLARD Mouvement brownien branchant avec sélection 22 / 33

Main result BBM with constant population size Results Order the individuals according to position: X 1 (t) > X 2 (t) >... Define x α by (1 + x α )e xα = α. Theorem Suppose E[L 2 ] < and at time 0, there are N particles distributed independently in (0, a N ) according to density proportional to sin(πx/a N )e x. Then, for every α (0, 1), ( XαN (t log 3 N) c N t log 3 N ) t 0 fidis = (L t + x α ) t 0. Here, (L t ) t 0 is a (pure-jump) Lévy process with L 0 = 0 and Lévy measure the image of π 2 x 2 1 x>0 dx by the map x log(1 + x). Proof idea: Approximate the N-BBM by BBM with a certain (random) absorbing barrier, called the B-BBM. Pascal MAILLARD Mouvement brownien branchant avec sélection 22 / 33

The B-BBM BBM with constant population size Results a: Position of a second barrier (idea from BBS (2010)). Add drift c, with c = 1 π 2 /a 2. A: Determines number of particles (N 2πe A+a /a 3 ). Let first a, then A go to. 0 a Pascal MAILLARD Mouvement brownien branchant avec sélection 23 / 33

The B-BBM BBM with constant population size Results a: Position of a second barrier (idea from BBS (2010)). Add drift c, with c = 1 π 2 /a 2. A: Determines number of particles (N 2πe A+a /a 3 ). Let first a, then A go to. When particle hits a, it will create WN descendants, where P(W > x) x 1 (BBS (2010)). Breakout when W > εe A, ε small. 0 a breakout! a 3 1 Pascal MAILLARD Mouvement brownien branchant avec sélection 23 / 33

The B-BBM BBM with constant population size Results a: Position of a second barrier (idea from BBS (2010)). Add drift c, with c = 1 π 2 /a 2. A: Determines number of particles (N 2πe A+a /a 3 ). Let first a, then A go to. When particle hits a, it will create WN descendants, where P(W > x) x 1 (BBS (2010)). Breakout when W > εe A, ε small. 0 a a 3 breakout! 1 a 2 After breakout, move barrier smoothly by random amount. Pascal MAILLARD Mouvement brownien branchant avec sélection 23 / 33

BBM with constant population size Results The B-BBM (continued) Three details: 1 Particles that hit a and have few descendants are important: compensator for the limiting Lévy process. 0 a a 3 breakout! 1 a 2 Pascal MAILLARD Mouvement brownien branchant avec sélection 24 / 33

BBM with constant population size Results The B-BBM (continued) Three details: 1 Particles that hit a and have few descendants are important: compensator for the limiting Lévy process. 0 a a 3 2 B-BBM until the first breakout = spine + BBM (weakly) conditioned not to hit a (Doob transform of BBM). breakout! 1 a 2 Pascal MAILLARD Mouvement brownien branchant avec sélection 24 / 33

BBM with constant population size Results The B-BBM (continued) Three details: 1 Particles that hit a and have few descendants are important: compensator for the limiting Lévy process. 0 a a 3 2 B-BBM until the first breakout = spine + BBM (weakly) conditioned not to hit a (Doob transform of BBM). breakout! 1 3 Shape of barrier given by a family (f ) 0 of explicitly given, smooth, increasing functions with f (0) = 0 and f (+ ) =. a 2 Pascal MAILLARD Mouvement brownien branchant avec sélection 24 / 33

BBM with constant population size Results B-BBM N-BBM First idea: couple both processes. black particles: present in B-BBM and N-BBM, red particles: present in B-BBM but not in N-BBM, blue particles: present in N-BBM but not in B-BBM. 0 Problem Dependencies between particles too difficult to handle. Pascal MAILLARD Mouvement brownien branchant avec sélection 25 / 33

The solution BBM with constant population size Results B -BBM B-BBM N-BBM B -BBM Introduce two auxiliary particle systems: The B -BBM and the B -BBM (stochastically) bound the N-BBM (and the B-BBM) from below and above (in the sense of stochastic order on the empirical measures). Pascal MAILLARD Mouvement brownien branchant avec sélection 26 / 33

BBM with constant population size Results Bounding the N-BBM from below: The B -BBM Kill a particle whenever it hits 0 or whenever it has N particles to its right (red particles). = more particles are being killed than in N-BBM. 0 N = 6 Pascal MAILLARD Mouvement brownien branchant avec sélection 27 / 33

BBM with constant population size Results Bounding the N-BBM from below: The B -BBM Kill a particle whenever it hits 0 or whenever it has N particles to its right (red particles). = more particles are being killed than in N-BBM. 0 N = 6 At timescale log 3 N, number of red particles stays negligible. Pascal MAILLARD Mouvement brownien branchant avec sélection 27 / 33

BBM with constant population size Results Bounding the N-BBM from above: The B -BBM Kill a particle whenever it (at the same time) hits 0 and has N particles to its right. A particle survives temporarily (blue particles) if it has less than N particles to its right the moment it hits 0. O(log 2 N) 0 N = 3 < N particles! < N particles! Pascal MAILLARD Mouvement brownien branchant avec sélection 28 / 33

Outline Perspectives 1 Introduction 2 Branching Brownian motion with absorption 3 BBM with constant population size 4 Perspectives Pascal MAILLARD Mouvement brownien branchant avec sélection 29 / 33

Perspectives N-BBM noisy FKPP Noisy FKPP equation u(t, x) : R + R [0, 1] t u = x 2 u + u(1 u) + εu(1 u)ẇ u(0, x) = 1 (x<0) (IC) Pascal MAILLARD Mouvement brownien branchant avec sélection 30 / 33

Perspectives N-BBM noisy FKPP Noisy FKPP equation u(t, x) : R + R [0, 1] t u = x 2 u + u(1 u) + εu(1 u)ẇ u(0, x) = 1 (x<0) (IC) Admits travelling wave solutions with same phenomenology as N-BBM (N ε 1 ), cf Mueller, Mytnik and Quastel (2010) Pascal MAILLARD Mouvement brownien branchant avec sélection 30 / 33

Perspectives N-BBM noisy FKPP Noisy FKPP equation u(t, x) : R + R [0, 1] t u = x 2 u + u(1 u) + εu(1 u)ẇ u(0, x) = 1 (x<0) (IC) Admits travelling wave solutions with same phenomenology as N-BBM (N ε 1 ), cf Mueller, Mytnik and Quastel (2010) Dual to BBM with particles coalescing at rate ε. density-dependent selection Pascal MAILLARD Mouvement brownien branchant avec sélection 30 / 33

Empirical measure Perspectives Known: Empirical measure of N-BBM seen from the left-most particle is an ergodic Markov process. Pascal MAILLARD Mouvement brownien branchant avec sélection 31 / 33

Perspectives Empirical measure Known: Empirical measure of N-BBM seen from the left-most particle is an ergodic Markov process. Open problem Show that stationary probability converges as N to the Dirac-measure in xe x dx. Pascal MAILLARD Mouvement brownien branchant avec sélection 31 / 33

Perspectives Empirical measure Known: Empirical measure of N-BBM seen from the left-most particle is an ergodic Markov process. Open problem Show that stationary probability converges as N to the Dirac-measure in xe x dx. ongoing work with J. Berestycki and M. Jonckheere. Pascal MAILLARD Mouvement brownien branchant avec sélection 31 / 33

Varying displacement Perspectives Q: What changes if one replaces BBM by BRW (or, equivalently, by branching Lévy process)? Pascal MAILLARD Mouvement brownien branchant avec sélection 32 / 33

Varying displacement Perspectives Q: What changes if one replaces BBM by BRW (or, equivalently, by branching Lévy process)? A: Depends on the right tail of the jump distribution. Pascal MAILLARD Mouvement brownien branchant avec sélection 32 / 33

Varying displacement Perspectives Q: What changes if one replaces BBM by BRW (or, equivalently, by branching Lévy process)? A: Depends on the right tail of the jump distribution. Ongoing work joint with Jean Bérard: Consider N-BRW where at each time step, particles split into two and children jump according to the law of a random variable X 0, with P(X > x) x α, α > 0. Keep only the N right-most particles at every time step. Right scaling: space by (N log N) 1/α, time by log N. Pascal MAILLARD Mouvement brownien branchant avec sélection 32 / 33

Perspectives Other open questions Speed of the system Genealogy Inhomogeneous media... Pascal MAILLARD Mouvement brownien branchant avec sélection 33 / 33