EE 560 MOS TRANSISTOR THEORY

Similar documents
ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

FIELD-EFFECT TRANSISTORS

Electrical Characteristics of MOS Devices

Lecture 12: MOS Capacitors, transistors. Context

Lecture 12: MOSFET Devices

MOS Transistor I-V Characteristics and Parasitics

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Lecture 11: MOS Transistor

Lecture 04 Review of MOSFET

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 3: CMOS Transistor Theory

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

EE105 - Fall 2006 Microelectronic Devices and Circuits

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

ECE-305: Fall 2017 MOS Capacitors and Transistors

MOS Transistor Theory

Lecture 4: CMOS Transistor Theory

ECE 342 Electronic Circuits. 3. MOS Transistors

Practice 3: Semiconductors

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

MOSFET: Introduction

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

The Devices: MOS Transistors

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Device Models (PN Diode, MOSFET )

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Device Models (PN Diode, MOSFET )

The Intrinsic Silicon

Section 12: Intro to Devices

Lecture 5: CMOS Transistor Theory

an introduction to Semiconductor Devices

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

6.012 Electronic Devices and Circuits Spring 2005

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Chapter 2 MOS Transistor theory

ECE 546 Lecture 10 MOS Transistors

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Section 12: Intro to Devices

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Microelectronics Part 1: Main CMOS circuits design rules

Integrated Circuits & Systems

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

MOS Transistor Properties Review

VLSI Design The MOS Transistor

N Channel MOSFET level 3

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Chapter 4 Field-Effect Transistors

Semiconductor Physics Problems 2015

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

ECE 340 Lecture 39 : MOS Capacitor II

Lecture 7 MOS Capacitor

The Devices. Devices

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

EECS130 Integrated Circuit Devices

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Extensive reading materials on reserve, including

6.012 Electronic Devices and Circuits

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

MOS CAPACITOR AND MOSFET

1. The MOS Transistor. Electrical Conduction in Solids

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

The Devices. Jan M. Rabaey

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Lecture 6: 2D FET Electrostatics

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

Class 05: Device Physics II

Dept. of Materials Science and Engineering. Electrical Properties Of Materials

The Physical Structure (NMOS)

MOSFET Physics: The Long Channel Approximation

EE5311- Digital IC Design

ECE321 Electronics I

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

MOS Transistor Theory

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Transcription:

1 EE 560 MOS TRANSISTOR THEORY PART 1

TWO TERMINAL MOS STRUCTURE V G (GATE VOLTAGE) 2 GATE OXIDE SiO 2 SUBSTRATE p-type doped Si (N A = 10 15 to 10 16 cm -3 ) t ox V B (SUBSTRATE VOLTAGE) EQUILIBRIUM: n p = n 2 i (n i 1.45 x 10 10 cm -3 ) Let SUBSTRATE be uniformy doped @ N A 2 n p0 n i and p N p0 = N A A (BULK concentrations)

ENERGY BAND DIAGRAM FOR p - TYPE SUBSTRATE 3 qχ = electron affinity of Si φ F = E F E i q Work Function qφ S = q χ + (E c E F ) φ Fp = kt (N A >> n i ) (N D >> n i ) q ln n i φ F n = kt N A q ln N D n i n i = 1.45 x 10-10 cm -3 @ room temp, k = 1.38 x 10-23 J/ o K, => kt/q = 26 mv @ room temp q = 1.6 x 10-19 C

ENERGY BAND DIAGRAMS FOR COMPONENTS OF MOS STRUCTURE 4 E o E Fm METAL (Al) qφ M = qχ m = 4.1 ev Ec OXIDE SEMICONDUCTOR (Si) qχ ox = 0.95 ev qφ S qχ Si = 4.15 ev E c band-gap: E g = 8 ev E Fp E i band-gap: E g = 1.1 ev qφ Fp E v E v Φ S > Φ M => p-type Si Φ M > Φ S => n-type Si

Equilibrium V G = 0 5 Oxide p-type Si Substrate Flat-band voltage: V FB = Φ M - Φ S volts Built-in potential: V B = 0 Equilibrium E c qφ M qφ S E Fm φ s = surface potential qφ s qφ F E Fp E v E i METAL (Al) OXIDE SEMICONDUCTOR (Si)

MOS SYSTEM WITH EXTERNAL BIAS Accumulation Region V G < 0 7 E OX E OX Oxide p-type Si Substrate holes ACCUMULATED on the Si surface V B = 0 V G = 0 Equilibrium Oxide p-type Si Substrate V B = 0

Depletion Region MOS SYSTEM WITH EXTERNAL BIAS V G > 0 (small) 8 E OX E OX Oxide p-type Si Substrate DEPLETION Region V B = 0 E c E Fm qv G E i E Fp E v METAL (Al) OXIDE SEMICONDUCTOR (Si)

MOS SYSTEM BIASED IN DEPLETION REGION 9 V G > 0 (small) 0 x d x x d E OX E OX Oxide p-type Si Substrate DEPLETION Region V B = 0 Mobile charge in thin layer parallel to Si surface Change in surface potential to displace dq Depletion Region Charge

Inversion Region MOS SYSTEM WITH EXTERNAL BIAS V G > 0 (large) 10 x dm E OX E OX Oxide p-type Si Substrate Electrons attracted to Si surface Inversion Condition φ s = -φ F V B = 0 x dm = x d φ s = φf = 2ε Si 2φ F qn A E c E Fm qv G φ s = -φ F E i E Fp E v METAL (Al) OXIDE SEMICONDUCTOR (Si)

G G G G G G 11 D S D S B B n-channel enhancement S B DS B D S D B p-channel enhancement B S I DS DS -V Tp I DS DS 0 V GS GS 0 +V Tn Tn V GS GS n-channel depletion G I DS DS D S I DS DS 0 +V Tp +V Tp p-channel depletion V GS GS B -V Tn Tn 0 V GS GS

B S G W D 12 L oxide n + n + substrate or bulk B p conducting channel depletion layer N-CHANNEL ENHANCEMENT-TYPE MOSFET nmos Layout polysilicon gate L W active area metal contact area

B S G D D G S B 13 p+ p+ n+ n+ n-well p -substrate V GS < V Tn CUT-OFF REGION 0 < V GS < V Tn DEPLETION REGION V GS V DS B ( G 2 ) S n + C GC GC CC BC BC G oxide D n + n + depletion region depletion region substrate or or bulk bulk B B p p

V GS > V Tn INVERSION REGION 14 V GS VDS B ( G 2 ) S n + C GC GC C C BC BC G oxide D n + n + n + substrate or or bulk B p conducting channel or inversion region depletion region Underneath Gate V G = V Tn E c E Fm qv Tn 2φ F -φ F φ F E i E Fp E v METAL (Al) OXIDE SEMICONDUCTOR (Si)

MOS Capacitance t ox = 50 nm, ε ox = 0.34 pf/cm => = 6.8 x 10-8 F/cm 2 W x L = 50 µm x 50 µm => C GC = 170 ff Depletion Capacitance C j = ε Si C BC = WLC j, x d φ Fp = kt q ln n i N A N A = 3 x 10 17 cm -3, n i = 1.45 x 10 10 cm -3 => φ F = -0.438 V (recall that at room temp or 27 o C kt/q = 26 mv) C GC = WL = ε ox t ox 15 [t ox -> TOX in SPICE] [ -> COX in SPICE] V SB = 0 V, ε Si = 1.06 pf/cm, q = 1.6 x 10-19 C, N A, φ F => x d = 6.22 µm, N SUB ε Si, x d => C j = 0.17 x 10-8 F/cm 2 [N SUB -> NSUB in SPICE] (p - substrate) W x L = 50 µm x 50 µm => C BC = 42.5 ff

Threshold Voltage for MOS Transistors n-channel enhancement [V T0 -> VT0 in SPICE] For V SB = 0, the threshold voltage is denoted as V T0 or V T0n,p 16 Threshold Voltage factors: -> Gate conductor material; -> Gate oxide material & thickness; -> Channel doping; -> Impurities in Si-oxide interface; -> Source-bulk voltage V sb ; -> Temperature. V T0 = Φ GC 2φ F Q B0 Q ox (+ for nmos and - for pmos) Φ GC = φ F (substrate) -φ M Φ GC = φ F (substrate) -φ F (gate) [Q ox = qnss in SPICE] [2φ F = PHI in SPICE] [N A = NSUB in SPICE] metal gate polysilicon gate

Threshold Voltage for MOS Transistors n-channel enhancement For : the threshold voltage is denoted as V T or V Tn,p 17 V T = Φ GC 2φ F Q B Q ox where = Φ GC 2φ F Q B0 V T0 Q ox Q B Q B0 (γ = Body-effect coefficient) [γ = GAMMA in SPICE] +

Threshold Voltage for MOS Transistors 18 n-channel -> p-channel ****BE CAREFULL*** WITH SIGNS φ F is negative in nmos, positive in pmos Q B0, Q B are negtive in nmos, positive in pmos γ is positive in nmos, negative in pmos V SB is negative in nmos, positive in pmos NOTE: γ C BC C GC

Threshold Voltage for MOS Transistors 19 3V V T0 nmos N BULK = N A 10 14 10 16 pmos N ABULK -3V N BULK = N D 3V V T 16 3 (nmos 10 /cm ) 14 (nmos 3 x10 /cm 3) 0 3 16 3 (pmos 10 /cm ) 6 V BS SB -3V

EXAMPLE 3.2 Calculate the threshold voltage V T0 at V BS = 0, for a polysilicon gate n-channel MOS transistor with the following parameters: substrate doping density N A = 10 16 cm -3, polysilicon doping density N D = 2 x 10 20 cm -3, gate oxide thickness t ox = 500 Angstroms, oxide-interface fixed charge density N ox = 4 x 10 10 cm -2. 20 φ F(sub), Φ GC : V T0 = Φ GC 2φ F(sub) Q B0 Φ GC = φ F(sub) φ F(gate) Q ox φ F(sub) = kt q ln n i = 0.026Vln 1.45x1010 N A 10 16 = 0.35V φ F(gate) = kt q ln N D n i 2x10 20 = 0.026Vln 1.45x10 10 = 0.60V Φ GC = φ F(sub) φ F(gate) = -0.35 V - 0.60 V = -0.95 V

EXAMPLE 3-2 CONT. Q B0 : V T0 = Φ GC 2φ F(sub) Q B0 Q ox 21 : Q ox : = 2(1.6x10 19 C)(10 16 cm 3 )(1.06 x10 12 Fcm 1 ) 2x0.35V F = C/V = - 4.87 x 10-8 C/cm 2 = ε ox t ox = 0.34x10 12 Fcm 1 500x10 8 cm = 6.8x10 8 F/cm 2 Q ox = qn ox = (1.6x10 19 C)(4 x10 10 cm 2 ) = 6.4x10 9 C/cm 2 Q B0 = 4.87x10 8 C/cm 2 6.8x10 8 F/cm 2 = 0.716V Q ox = 6.4x10 9 C/cm 2 6.8x10 8 F/cm 2 = 0.094V V T0 = 0.95V ( 0.70V) ( 0.72V) (0.09V) = 0.38V

EXAMPLE 3.3 Consider the n-channel MOS transistor with the following process parameters: substrate doping density N A = 10 16 cm -3, polysilicon doping density N D = 2 x 10 20 cm -3, gate oxide thickness t ox = 500 Angstroms, oxide-interface fixed charge density N ox = 4 x 10 10 cm -2. In digital circuit design, the condition V SB = 0 can not always be quaranteed for all transistors. Plot the threshold voltage V T as a function of V SB. 22 γ - Body-effect coefficient: γ = F = C/V 2qN e A Si = 2(1.6 x10 19 C)(10 16 cm 3 )(1.06 x10 12 Fcm 1 ) 6.8x10 8 F/cm 2 = 5.824x10 8 C/V 1/ 2 cm 2 6.8x10 8 C/Vcm 2 = 0.85V 1/ 2

EXAMPLE 3-3 CONT. 23 where VT0 = 0.38V (from EX 3-2) γ = 0.85V 1/2 1.60 1.40 V T (Volts) 1.20 1.00 0.80 0.60 0.40 0.20-1 0 1 2 3 4 5 6 V SB (Volts)