ON THE PETROVIC INEQUALITY FOR CONVEX FUNCTIONS. J. E. Pecaric, Beograd

Similar documents
New Inequalities For Convex Sequences With Applications

Concavity of weighted arithmetic means with applications

Characterizations Of (p, α)-convex Sequences

Generalization of Samuelson s inequality and location of eigenvalues

Journal of Mathematical Analysis and Applications 250, doi: jmaa , available online at http:

An Inequality for Logarithms and Applications in Information Theory

MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL CONVEXITY

A GRÜSS-TYPE INEQUALITY AND ITS APPLICATIONS

The log-behavior of n p(n) and n p(n)/n

GENERALIZATIONS OF CONVERSE JENSEN S INEQUALITY AND RELATED RESULTS

LAZHAR S INEQUALITIES AND THE S-CONVEX PHENOMENON. I.M.R. Pinheiro

New Inequalities of Hermite-Hadamard-like Type for Functions whose Second Derivatives in Absolute Value are Convex

ON LANDAU S THEOREMS. 1. Introduction E. Landau has proved the following theorems [11]:

Some Tauberian theorems for weighted means of bounded double sequences

BETWEEN QUASICONVEX AND CONVEX SET-VALUED MAPPINGS. 1. Introduction. Throughout the paper we denote by X a linear space and by Y a topological linear

Numerical integration of analytic functions

ON WEIGHTED ESTIMATES FOR STEIN S MAXIMAL FUNCTION. Hendra Gunawan

Asymptotic distribution of products of sums of independent random variables

Available online at J. Math. Comput. Sci. 2 (2012), No. 3, ISSN:

THE REPRESENTATION OF THE REMAINDER IN CLASSICAL BERNSTEIN APPROXIMATION FORMULA

Several properties of new ellipsoids

Some inequalities for the Kirchhoff index of graphs

On some properties of digamma and polygamma functions

About the use of a result of Professor Alexandru Lupaş to obtain some properties in the theory of the number e 1

SOME PROPERTIES OF THE SEQUENCE OF PRIME NUMBERS

CHAPTER 10 INFINITE SEQUENCES AND SERIES

ON ABSOLUTE MATRIX SUMMABILITY FACTORS OF INFINITE SERIES. 1. Introduction

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION

A GRÜSS TYPE INEQUALITY FOR SEQUENCES OF VECTORS IN NORMED LINEAR SPACES AND APPLICATIONS

MA131 - Analysis 1. Workbook 9 Series III

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

Series III. Chapter Alternating Series

INEQUALITIES BJORN POONEN

2.4.2 A Theorem About Absolutely Convergent Series

University of Manitoba, Mathletics 2009

Seunghee Ye Ma 8: Week 5 Oct 28

MDIV. Multiple divisor functions

Reformulation of Shapiro s inequality

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

A GENESIS FOR CESÀRO METHODS

6.3 Testing Series With Positive Terms

SZEGO S THEOREM STARTING FROM JENSEN S THEOREM

Dominant of Functions Satisfying a Differential Subordination and Applications

Implicit function theorem

ON SOLVING A FORMAL HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION IN THE COMPLEX FIELD

PUTNAM TRAINING INEQUALITIES

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

Tauberian theorems for the product of Borel and Hölder summability methods

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

IJITE Vol.2 Issue-11, (November 2014) ISSN: Impact Factor

HOMEWORK #10 SOLUTIONS

MATH 112: HOMEWORK 6 SOLUTIONS. Problem 1: Rudin, Chapter 3, Problem s k < s k < 2 + s k+1

Refinements of Jensen s Inequality for Convex Functions on the Co-Ordinates in a Rectangle from the Plane

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

A TYPE OF PRIMITIVE ALGEBRA*

Math 113 (Calculus 2) Section 12 Exam 4

REVIEW 1, MATH n=1 is convergent. (b) Determine whether a n is convergent.

PROBLEMS AND RESULTS ON THE THEORY OF INTERPOLATION. I

d) If the sequence of partial sums converges to a limit L, we say that the series converges and its

International Journal of Mathematical Archive-3(4), 2012, Page: Available online through ISSN

2 Banach spaces and Hilbert spaces

INEQUALITY FOR CONVEX FUNCTIONS. p i. q i

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

10.6 ALTERNATING SERIES

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

Chapter 4. Fourier Series

SCORE. Exam 2. MA 114 Exam 2 Fall 2016

MAT1026 Calculus II Basic Convergence Tests for Series

The r-generalized Fibonacci Numbers and Polynomial Coefficients

Some Mean Inequalities

lim za n n = z lim a n n.

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

Some identities involving Fibonacci, Lucas polynomials and their applications

A NEW NOTE ON LOCAL PROPERTY OF FACTORED FOURIER SERIES

Measure and Measurable Functions

SOME PROPERTIES OF CERTAIN MULTIVALENT ANALYTIC FUNCTIONS USING A DIFFERENTIAL OPERATOR

9.3 Power Series: Taylor & Maclaurin Series

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES

Review for Test 3 Math 1552, Integral Calculus Sections 8.8,

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009)

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

1. By using truth tables prove that, for all statements P and Q, the statement

II. EXPANSION MAPPINGS WITH FIXED POINTS

Classes of Uniformly Convex and Uniformly Starlike Functions as Dual Sets

SEVERAL GEOMETRIC INEQUALITIES OF ERDÖS - MORDELL TYPE IN THE CONVEX POLYGON

<, if ε > 0 2nloglogn. =, if ε < 0.

Some Tauberian Conditions for the Weighted Mean Method of Summability

SPLINE INTERPOLATION AND BEST QUADRATURE FORMULAE. 1. The spline interpolation formula, A spline function S(x), of degree &( = 0)> having the knots

Ma 530 Introduction to Power Series

THE INTEGRAL TEST AND ESTIMATES OF SUMS

INFINITE SEQUENCES AND SERIES

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Math 113, Calculus II Winter 2007 Final Exam Solutions

Assignment Number 3 Solutions

A Note On L 1 -Convergence of the Sine and Cosine Trigonometric Series with Semi-Convex Coefficients

1 Lecture 2: Sequence, Series and power series (8/14/2012)

On the Inverse of a Certain Matrix Involving Binomial Coefficients

INFINITE SEQUENCES AND SERIES

ds n SOME APPLICATIONS OF LEGENDRE NUMBERS ps(x) (i x2)s/2dsp (x), KEY WORDS ANY PHRASES. Aoed Legenre functions and polynomials, Legenre polynomials,

Transcription:

GLASNIK MATEMATIcKI Vol._18 (38) (1983), 77 8S. ON THE PETROVIC INEQUALITY FOR CONVEX FUNCTIONS J. E. Pecaric, Beograd Abstr~t. I this paper we give some geeralizatios of wel1-kow Petrovic's iequality for covex fuetios. M. Petrovic [14] (see also [10, p. 22]) has proved the followig theorem: THEOREM A. If fis a covex fuctio o the segmet I ~ [O, al, tl XI E I U = 1,,.,' ) ad XI +... + X El, the f(xi) +...+f(x) ~ f(xl +...+ X) + ( - l)f(o). (1) T. Popoviciu [15] has cosidered the more geeral iequality ad he ohtaied that (2) holds for Pi > O ad XI ~ O(i = 1,..., ). P. M. Vasic [17] (see also [18]) showed that the result of T. Popoviciu is ot valid, ad proved that (2) h01ds if pl ~ 1 ad XI ~ O (1 ~ i ~ ). F. Giaccardi [7] has geeralized the iequalities (1) ad (2). The coditios for validity of such a iequality were weakeed by P. M. Vasic ad Lj. Stakovic [19] (see also [9]). Their result is the followig theorem: THEOREM B. Let Pl ~ O ad XI (i = 1, ""' ) be real umbers which satisfy (XI - xo) ( r Pk Xk - Xi) ~ O (i = 1,..., ), ~ Pk Xk :fi Xo. (3) k=l k=1 The, for every covex fuctio f, Mathematic$ subject classificcititms (1980): Primary 26 D 99. Ke, fljordsad phrases: Covex fuetio, Petrovic's iequality.

78 J. E. Pecaric where " "" II A = ( ~ P, X, - Xo ~ P,)!( ~ P, X, - Xo), B = ~ Pi Xi!( ~ P, Xi - 1=1 i=l i=l Xo). If Xo = O, the (4) 'reduces to (2). (5) I [19], the followig resu1t was proved: THEOREM C. Let Xi' P, (i = 1,..., ) be real umbers such that II -I X ( ~ P, XI _ X) ~ O, P ~ O, X ~ P, X, ~ O, ~ Pi Xi :f:. O. (6) The, lor every covex luctio I, where P (p, x;f) ~ P-1 (p, x;f) (7) II II II P (p, x;f) =/( ~ P, Xi) - '2..Pt.!(Xi) + ( ~ P! - 1)/(0).. For some further geeralizatios of the iequalities (2) ad (4) see [8], [11], [17] ad [19]. I. 01ki [12] (see also [4], [5]) has proved the followig result: THEOREM D. Let 1 ~ hi ~... ~ h ~ O ad al ~...~a ~ ~ O. Let I be a covex luctio o [O, ad. The Resu1ts, which prevised this iequality ([2], [3], [16], [20], [21]), are give i [10, pp. 112 ad 113]. R. E. Barlow, A. W. Marshall ad F. Proscha [1] have proved a geeralizatio of Theorem D (see Remark' 2). I [13] the followig ge.eralizatio of Theorem D was give: 'theorem E. Let the real umbers Ph ''''P ad Xl'~. ~ ~ X ~ Xo ~ O satisly the coditios (8) O ~ P" ~ 1 (k = 1,..., ), ~ PI Xi > Xo (if Xo > O), k where P" =.~P" 11I is a covex luctio, the the reverse iequahty. i (4) ho/ds.. 11

O the Petr()vic iequa1ity for covex fuctios 79 I this.paper we shall prove, startig with the Fuchs geeraw lizatio of the Majorizatio theorem (see [6]) some geeralizatios of the previous results. Fuchs' result ca be writte i the followig form: THEOREM F..-Let al ~... ~ a$' h~...~b$ ad qu..,qs be real umbers such that. hold. The, for every co.vexfuctio f, the iequality is valid. Now, we shali prove the followig theorem: (9) THEOREM 1. Let Xl.~. ~ Xm ~ xo ~ Xm+l ~ ~ XII (m E E (O, 1,..., )) ad PU..., Pil be real umbers such that X, ~ I (i = = O, 1,... ; ; I is a iterval i R), ~ Pi X, E I ad k ~ Pi ( ~ Pr Xr -,=1 Xi) ~ O cl ~ k~ m), ~ P, ( ~ Pr ~r - i=k.,=1 Xi) ~ O (m + 1~ k ~ ). (10) The, for every covex fuctio f o I, the iequality (4) hblds~11 the reverse iequalitt'eshold i (10), the the reverse ~'equality~'(4} holds. Proof. By substitutios s=+i; aj =X,, qj=pj(i= 1,.,:m); am+l=xo, qm+l=b(l-p,.); al = X'-l' ql = P'-l (i = m + 2,..., + 1); b, = ~ p,x, (i =.1,...,. + 1); ad " s=+i; a,= ~P,x, (i=i,...,+l);'b,=x" q, ' p,(i~ = 1,., m); bm+1= xo, qm+l = J3 (1 - P,.); b, = x,-u ql = P'-l (i = m +2,..., + i); from Theorem F, we g~t Theorem 1.

80 J. E. Pecaric Remaik 1. For Xl ~ ~ X ~ Xo the coditios (10) 'be~ome ad for Xo li?; XI li?; li?; X k ~ p, ( ~ P,X, - XI) ~ O (k = 1,.., ), (11) i l,,,,,1 ~ P, ( ~ P, x, - X,) ~ O (k -:. 1,..., ). (12) i=k T""1 If P,li?; O(i = 1,..., ), the coditios (11) ad (12) ca be replaced o by the coditios ~ P, X, li?; XI ad ~ P, X, ~ X, which are com- 1=1 plete1y equivalet to the coditio (3). From Theorem 1, for Xo = O we get: THEOREM 2. Let the real umbers X 1 li?; li?; X m li?; O ~ li?; xm+1 li?;.. li?; X (m E (0,1,.,» ad Pu...,P satisfy the co. ditiem x, El (i = 1,..., j O E 1), ~ P, X, El ad (10). The, for i=i every covex luct~'o I o 1, the iequality (2) holds. II the reverse iequalities i (10) hold, the the reverse iequality i (2) is 'Valid. Now, we shall give' some speciai cases of Theorems 1 ad 2. THEOREM 3. Let Xl li?;. li?; Xm li?; Xo li?; Xm+1 li?;.. li?; X (m E E (O, 1,.,,'» be real umbers such that XI E I (i = O, 1,., ), Xm li?; O ad Xm+1 ~ O. (a) 1/ P is real -tple such that O ~ P" ~ 1 (k = 1,..,' m), O ~ ~ ~ 1 (k = m = 1,..., ) (p" = P - P"-l)' (13) the for every covex fuctt'o f :1 ~ R, the reverse iegua1ity i (4) helds. or (b) 1/ ~ P, X, E 1ad il either 1=1 the (4) helds. P" li?; 1 (k = 1,, m), P" ~ O (k = m + 1,., )j (14) P" ~ O (k = 1,., m), P" li?; 1 (k = m + 1,..., ); (15)

O the Petrovic iequality for covex fuctios 81 Proo!. (a) For k = 1,..., m we have k k-l ~ Pi ( ~ Pr Xr - Xi) = ( ~ Pr Xr - Xk) Pk + ~ Pi (XI+l - Xi) = r=1 r=1 m-l = Pk (Xm P - Xk + ~ Pi (Xi - Xi+l) + ~ ii; (XI - Xi-I)) + ;=m+l k-l + ~ Pi (Xi+! -Xi) =Pk(XmP -Xk) + (1-Pk) ~ PI (Xi+l -Xi) + m-l + Pk ~ Pi (Xi - Xi+l) + Pk ~ ii; (Xi - Xi-I) = ;=k ;=m+l k-l = Pk (P - 1) Xm + (1 - Pk) ~ Pi (XI+l - Xi) + m-l + Pk ~ (Pi-l)(Xj-Xi+l)+Pk ;=k ~ ii;(xi-xi-l)=pk(pm+lxm+l ;=m+l + k-l + (Pm - 1) Xm) + (1 - Pk) ~ Pi (Xi+l - Xi) + m-l + Pk ~ (Pi - 1) (Xi - XI+l) + Pk ~ ii; (XI - XI-I) ~ O. j=k ;=m+2 Aalogously, for k = m + 1,..., we have ~ Pi ( ~ PrXr - XI) = Pk(Xm+l (Pm+1-1) + xmpm) + ;=k r=1 k-l m Usig (13) we also have XI;?; ~ Pi Xi ;?;O ad O;?; ~ PI Xi ;?; ;=m+l ;?;X wherefrom we have XI ;?; ~ Pi Xi ;?;X Usig the above idetities we ca prove (b). From Theorem 3, for Xo = O we get: THEOREM 4. Let XI ;?; o ;?;Xm ;?;O;?; Xm+l ;?;... ;?;X (m E E (O, 1, o, " )), Xi E I (i = 1, ",' ) ad Pl'. o o, P be real umbers.

82 J. E. Pecaric (i) If (13) holds, the for every covex fuctio f : I -7- R the re- ~'erse iequality i (2) is valid. (ii) If the coditios of Theorem 3 (b) are fulfilled, the (2) holds. Remark 2. I [1], the fol1owig result was give: Let XI ~ ~ Xm ~ O ~ Xm+l ~ 00. ~ X". (a) Reverse iequality holds i (2), if ad oly if (13) holds. (b) (2) holds if ad oly if there exists j ~z such that Pi ~ O, i <j; Pi ~ 1, j ~z ~ m, ~ ~ O, i ~m + 1, or there exists j ~ m such that Pi ~ O, i ~ m; Pi ~ 1, 111 + 1 ~ i ~j; Pl ~ O, i >j. For j = 1 ad j =, from (b), we get (ii) from Theorem 4. Usig Theorem 2, we ca exted the coditios uder which the iequality (7) holdso Namely, from it we obtai that iequality f (ql al + q2 a2) - qi!(al) - qd(a2) + (ql + q2 - l)f(o) ~ O (16) holds if: 01' O ~ al ~ a2 ad q2 (ql al + q2 a2 - a2) ~ O, ql (ql al + q2 a2 - al) + q2 (ql al + (17) (18) ql (ql al + q2 a2 - al) ~ O, q2 (ql al + q2 a2 - a2) ~ O. (19) The reverse iequality i (16) holds if i (17), (18) ad (19) the reverse iequalities holds. -I Usig the substitutios: al = XII' a2 = ~ Pi Xi' ql = Pil' q2 = 1; -I ad al = ~ Pl Xi' a2 = XII' ql = 1, q2 = Pil' we get that (7) holds if 01' -I ~ Pi Xi ~ XII ~ O, ~ Pi Xi ~ ~ Pi Xi ~ O; (20) -I XII ~ O ~ ~ Pi Xi' XII ~ ~ Pi Xi ~ ~ Pi Xi; (21) 01' if either of the coditios (20) ad (21) hold, with the reverse iequalities.

O the Petrovic iequality for eovex fuetios 83 or The reverse iequality i (7) holds if -I -I ~ Pi Xi ~ X ~ O, ~ Pi Xi = ~ Pi Xi ~ O; -I JZ Iz-l X ~ O ~ ~ Pi Xi' X ~ ~ Pi Xi ~ ~ Pi Xi; ;~1 (22) (23) or if either of the coditios (22) ad (23) hold, with the reverse iequalities. By combiig the coditio (21) ad the correspodig coditio with the reverse iequalities, we obtai (6). The author is grateful to Professors 1. 01ki ad P..M. Vasic for the useful suggestios. REFERENCES: [1] R. E. Bal'lo'ilJ, A. W. iviars!zall ad F. Prosc!zall, Some iequalities for starshaped ad eovex fuetios, Pacif. ]. Math. 29 (1969), 19-42. [2] R. BelimalJ, O a iequality of Weiberger, Amer. Math. (1953), 402. Mothly 60 [3] M. Boeracki, Sur les iegalities remplies par des expressios dot les termes ot des siges alteres, A. Uiv. Mariae Curie-Sklodowska 7 A (1953), 89-102. [4] H. D. Bruk, O a iequality for eovex fuetio, Proe. Amer. Math. Soe. 7 (1956), 817-824. [5],Itegral iequalities for fuetio with odeereasig ieremets, Pacif. J. Math. 14 (1964), 783-793. [6] L. Fuchs, A ew proof of a iequality of Hardy-Littlewood-P6Iya, Mat. Tidsskr. B. 1947, 53-54. [7] F. Giaccardi, Su alcue disuguagliaze, Gior. Mat. Fiaz. 1 (4) (1955), 139-153. [8] J. D. Keckic ad l. B. Lackovic, Geeralizatio of some iequa1itiesof P. M. Vasic, Mat. Vesik 7 (22) (1970), 69-72. [9] P. Lah ad M. Ribaric, Coverse of Jese's iequality for eovex fuetios, Uiv. Beograd. Pub1. Elektroteh. Fak. Ser. Mat. Fiz. No 412-No 460 (1973), 201-205. [10] D. S. Mitriovic (I eooperatio with P. M. Berli-Heidelberg-New York, 1970. Vasic), Aalytie Iequalities, [11] A. W. Marshall, 1. Olki ad F. Proseha, Mootoicity of ratios of meas ad other applicatios of majorizatio, I: Iequalities, edited by O. Shisha. New York-Lodo 1967, 177-190. [12] l. Olki, O iequalities of Szego ad Bellma, Proe. Nat. Acad. Sci. USA 45 (1959), 230-231. [13] J. E. Pecaric, O the Jese-Steffese iequality, Ui\". Beograd. Publ. Elektroteh. Fak. Ser. Mat. Fiz. No 634-No 676 (1979).

84 J. E. Pecaric [14] M. Petrovic, Sur ue foetioelle, Publ. Math. Uiv. Belgrade 1 (1932), 149-156. [15] T. PopoviciII, Les foetios eovexes, Aetualites Sci. Id. No 922, Paris, 1945. [16] G. Szeg6, Uber eie Verallgemeierug des Dirieh1etsehe Itegrals, Math. Z. 52 (1950), 676-685. [17] P. M. Vasic, O jedoj ejedakosti M. Petrovica za kovekse fukcije, Matematicka biblioteka, No 38 (1968), Beograd, 101-104. [18], Sur ue iegalite de M. Petrovic, Mat. Vesik 5 (20) (1968),473-478. [19] ad Lj. Stakovic, O some iequalities for eovex ad g-eovex fuetios, Uiv. Beograd. Publ. Elektroteh. Fak. Ser. Mat. Fiz. No 412-No 460 (1973), 11-16. [20] H. F. W'eiberger, A iequa1ity with alteratig sigs, Proe. Nat. Acad. Sci. USA 38 (1952), 611-613. [21] E. M. l'('rigllt A iequality for eovex fuetios, Amer. Math. Mothly 61 (1954), 620-622. (Reeeived Mareh 7, 1979) (Revised August 5, 1979 ad Jue 13, 1980) Gradeviski fakultet pp 895 11000 Beograd, Yugoslavia o PETROVICEVOJ NEJEDNAKOSTI ZA KONVEKSNE FUNKCIJE J. E. Pecaric, Beograd Sadržaj U claku je dokazaa slijedeca geeralizacija pozate Petroviceve ejedakosti za kovekse fukcije TEOREMA 1. Neka su X1 ~ ~ Xm ~ Xo ~ Xm+1 ~ ~ X (m E (0,1,..., )) i Pl"'" P takvi reali brojevi da XI El (i = O, 1,..., ), LPIXI El i da važi (10). Tada za svaku fukciju f koveksu a l važi 1=1 (4), gdje su A i B defiisai sa (5). Ako u (10) važe suprote ejedakosti, tada suprota ejedakost važi i u (4). U specijalom slucaju dobija se: TEOREMA 3. Neka su X1 ~ ~ Xm ~ Xo ~ Xm+l ~. ~ X (m E (O, 1,..., )) takvi reali brojevi da XI El (i= O, 1,..., ), Xm ~ O, Xm+ 1~ O. (a) Ako je P takva reala -torka da važi (13), tada za svaku koveksu fukciju f : l ~R, važi suprota ejedakost u (4)

O the Petrovic iequality for covex fuctios 85 (h) Ako ~ P, X, E I i ako važi ili (14) ili (15) tada važi (4). Za Xo = O, iz Teoremali 3 dobijaju se respektivo Teoreme 2 i 4, a takode su dobijei eki rezultati koji se odose a rafiiraje Petroviceve ejedakosti.