Magnetism: Spin-orbit coupling magnetic exchange and anisotropy

Similar documents
Relativistic effects & magnetism. in WIEN2k

Hands on Session III

High-pressure cupric oxide: a room-temperature

Crystalline and Magnetic Anisotropy of the 3d Transition-Metal Monoxides

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer

Magnetic ordering, magnetic anisotropy and the mean-field theory

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Skyrmions à la carte

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014

Transition Elements. pranjoto utomo

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Electronic and Magnetic properties of pure and doped manganese clusters

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Electronic structure calculations results from LDA+U method

Luigi Paolasini

Competing Ferroic Orders The magnetoelectric effect

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

Magnetic ordering of local moments

WORLD SCIENTIFIC (2014)

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Density functional calculations on the charge-ordered and valence-mixed modification of YBaFe 2 O 5

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

Heisenberg-Kitaev physics in magnetic fields

Supplementary information

Magnetism at finite temperature: molecular field, phase transitions

Lecture 11: Transition metals (1) Basics and magnetism

The Overhauser Instability

The exchange interaction between FM and AFM materials

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 13 Nov 2003

Noncollinear Magnetism

Introduction to VASP (1)

MSE 7025 Magnetic Materials (and Spintronics)

Basic Magnetism (I. Fundamentals)

1. Hydrogen atom in a box

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea

Computational Material Science Part II-1: introduction. Horng-Tay Jeng ( 鄭弘泰 ) Institute of Physics, Academia Sinica

Some surprising results of the Kohn-Sham Density Functional

Antiferromagnetic Spintronics

Exchange Coupling and Exchange Bias in FM/AFM Bilayers for a Fully Compensated AFM Interface

VASP Tutorial: Dielectric properties and the Random-Phase-Approximation (RPA)

Magnetism in transition metal oxides by post-dft methods

Ferromagnetism. Iron, nickel, and cobalt are ferromagnetic.

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

Spin effects (spin polarized systems, spin-orbit ) G. Zérah CEA-DAM Ile de France Bruyères-le-Châtel

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

Luigi Paolasini

Magnetism (FM, AFM, FSM)

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface

Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors:

Magnetism in Condensed Matter

MOLECULAR MAGNETISM. Leigh Jones Room 133 School of Chemistry NUI Galway. Introduction to Molecular Magnetism

Spin Hamiltonian and Order out of Coulomb Phase in Pyrochlore Structure of FeF3

DFT+U practical session

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

2.1 Experimental and theoretical studies

Direct visualization of the Jahn Teller effect coupled to Na ordering in Na 5/8 MnO 2

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

Electron Correlation

Magnetization reversal in weak ferrimagnets and canted antiferromagnets

Contents. Acknowledgments

Orbitals, reduced dimensionality and spin gaps and insulator-metal transitions

Lecture 24 Origins of Magnetization (A number of illustrations in this lecture were generously provided by Prof. Geoffrey Beach)

Materials that you may find helpful when working through this exercise

Phase Transitions of Random Binary Magnetic Square Lattice Ising Systems

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

Solving the sign problem for a class of frustrated antiferromagnets

Quantum order-by-disorder in Kitaev model on a triangular lattice

Supplementary Information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Homework 5 Computational Chemistry (CBE 60547)

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic.

Temperature-dependence of magnetism of free Fe clusters

Magnetic recording technology

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Electronic structure, magnetic structure, and metalatom site preferences in CrMnAs

PHY331 Magnetism. Lecture 6

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Intermediate valence in Yb Intermetallic compounds

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions

Magnetism. Ram Seshadri MRL 2031, x6129, Some basics:

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Structure of CoO(001) surface from DFT+U calculations

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden

Tutorial 1. Atoms, molecules, and bulk systems. Computational Materials Physics, Faculty of Physics, University Vienna, Vienna, Austria

Electron transport simulations from first principles

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

PHY331 Magnetism. Lecture 3

Transport and magnetic properties in one dimensional A 3 ABO 6 family

Interaction of matter with magnetic fields

Analysis of Spin Exchange Interactions in (C 2 N 2 H 10 )[Fe(HPO 3 )F 3 ] on the Basis of Electronic Structure Calculations

An introduction to magnetism in three parts

Linear spin wave theory

Transcription:

VASP workshop Rennes 2016 Magnetism: Spin-orbit coupling magnetic exchange and anisotropy Xavier Rocquefelte Institut des Sciences Chimiques de Rennes (UMR 6226) Université de Rennes 1, FRANCE

INTRODUCTION Magnetic properties: ü ü ü ü ü ü Spin-state (high/low) Long-range/short-range orders Collinear / non-collinear Magnetic anisotropy Magnetic frustration Magnetic exchange Spin-State Magnetic exchange Long-range order Magnetic anisotropy 10 0 10-3 10-6 Energy scale (ev)

INTRODUCTION Paramagnetic (PM) Ferromagnetic (FM) order Ferrimagnetic order Antiferromagnetic (AFM) order

COLLINEAR MAGNETISM Magnetic susceptibility of a ferromagnetic (FM) compound 0,4 χ mol (emu/mol) 0,3 0,2 0,1 PM without long range interaction 0 0 50 100 150 200 250 300 T(K)

COLLINEAR MAGNETISM Magnetic susceptibility of a ferromagnetic (FM) compound 0,4 χ mol (emu/mol) 0,3 0,2 0,1 PM without long range interaction 0 0 50 100 150 200 250 300 T(K)

COLLINEAR MAGNETISM Magnetic susceptibility of a ferromagnetic (FM) compound 0,4 χ mol (emu/mol) 0,3 0,2 0,1 PM without long range interaction 0 0 50 100 150 200 250 300 T(K)

COLLINEAR MAGNETISM Magnetic susceptibility of a ferromagnetic (FM) compound 0,4 χ mol (emu/mol) 0,3 0,2 0,1 PM without long range interaction 0 0 50 100 150 200 250 300 T(K)

COLLINEAR MAGNETISM Magnetic susceptibility of a ferromagnetic (FM) compound 0,4 χ mol (emu/mol) 0,3 J F 0,2 0,1 PM without long range interaction 0 0 50 100 150 200 250 300 T(K)

COLLINEAR MAGNETISM Magnetic susceptibility of an antiferromagnetic (AFM) compound 0,04 χ mol (emu/mol) 0,03 PM without longrange interactions 0,02 0,01 0 0 50 100 150 200 250 300 T(K)

COLLINEAR MAGNETISM Magnetic susceptibility of an antiferromagnetic (AFM) compound 0,04 χ mol (emu/mol) 0,03 PM without longrange interactions 0,02 0,01 0 0 50 100 150 200 250 300 T(K)

COLLINEAR MAGNETISM Magnetic susceptibility of an antiferromagnetic (AFM) compound 0,04 χ mol (emu/mol) 0,03 PM without longrange interactions 0,02 J AF 0,01 0 AF PM T(K) 0 50 100 150 200 250 300

COLLINEAR MAGNETISM Ferromagnetic Antiferromagnetic 0,4 χ mol (emu/mol) 0,02 χ mol (emu/mol) 0,3 Ferromg order when kt 0,2 0,1 0 F PM T(K) AF PM 0 50 100 150 200 250 300 0 50 100 150 200 250 300 T C Curie temperature T N Néel temperature 0,01 T(K) J F J AF Ferromagnetic exchange: J F < 0 Antiferromagnetic exchange: J AF > 0

NON-COLLINEAR MAGNETISM AFM with 2 subnetworks having different magnetization directions Frustrated AFM weak ferromagnetism Topologic frustration FM-AFM competition? J 1 J 1 J 2? J 1 : FM J 2 : AFM

NON-COLLINEAR MAGNETISM AFM with 2 subnetworks having different magnetization directions Frustrated AFM weak ferromagnetism Topologic frustration FM-AFM competition? J 1 J 1 J 2? J 1 : FM J 2 : AFM

Illustration of a collinear calculation: NiO Experiment data: Ni 2+ : d 8 electronic configuration Octahedral environment Rock-salt structure Space group: Fm-3m (#225) Optical gap: 4-4.3 ev Magnetic properties: AFM order µ(ni) = 1.7-1.9 µ B

Illustration of a collinear calculation: NiO Experiment data: Ni 2+ : d 8 electronic configuration Octahedral environment Rock-salt structure Space group: Fm-3m (#225) Optical gap: 4-4.3 ev Magnetic properties: AFM order µ(ni) = 1.7-1.9 µ B

Illustration of a collinear calculation: NiO 2 x 2 x 2 supercell

Illustration of a collinear calculation: NiO POSCAR Ni O Exercises: GGA calculations for AFM and FM orders GGA+U calculations for AFM and FM orders Comparison: Density of states Total energy Estimation of magnetic exchange

Illustration of a collinear calculation: NiO INCAR: GGA - AFM KPOINTS:

Illustration of a collinear calculation: NiO OSZICAR Total magnetic moment in the cell

Illustration of a collinear calculation: NiO OUTCAR Integration of magnetic moment in the PAW sphere (LORBIT = 11 in INCAR file) Ni1: 1.34 µ B Ni2: -1.34 µ B

Illustration of a collinear calculation: NiO

Illustration of a collinear calculation: NiO KPOINTS: 8 8 8

Illustration of a collinear calculation: NiO KPOINTS: 8 8 8 INCAR AND ICHARG = 11 ISMEAR = -5 NEDOS = 1000 EMIN = -10 ; EMAX = 15 GGA: too small band gap compared to exp. values

Illustration of a collinear calculation: NiO NiO - GGA - AFM Ni1: 1.24 µ B Ni2: -1.24 µ B Exp.: ±1.7-1.9 µ B OUTCAR

Illustration of a collinear calculation: NiO INCAR: GGA - FM KPOINTS: 8 8 8

Illustration of a collinear calculation: NiO NiO - GGA - FM Ni1: 1.06 µ B Ni2: 1.06 µ B OUTCAR

Illustration of a collinear calculation: NiO INCAR: GGA+U - AFM U eff = U J = 5 ev

Illustration of a collinear calculation: NiO NiO - GGA+U - AFM Better k-mesh Higher NEDOS value Ni1: 1.67 µ B Ni2: -1.67 µ B Exp.: ±1.7-1.9 µ B

Illustration of a collinear calculation: NiO NiO GGA+U - FM Ni1: 1.73 µ B Ni2: 1.73 µ B Oxygen magnetic moment Estimation of magnetic exchange?

Estimation of magnetic coupling parameters Estimation of J can be done by mapping energy differences onto the general Heisenberg Spin Hamiltonian: J ij : spin exchange parameter between the spin sites i and j! Ĥ = Ĥ0 + J ij Si. S! j i<j Long-range order J ij > 0 AFM J ij < 0 FM

Estimation of magnetic coupling parameters Estimation of J can be done by mapping energy differences onto the general Heisenberg Spin Hamiltonian: J ij : spin exchange parameter between the spin sites i and j! Ĥ = Ĥ0 + J ij Si. S! j i<j Long-range order J ij > 0 AFM J ij < 0 FM E α = α H α = E 0 + S 2 J ij σ i σ j i<j S: Spin hold by the magnetic center σ i = ±1 (up or down spin)

Estimation of magnetic coupling parameters Estimation of J can be done by mapping energy differences onto the general Heisenberg Spin Hamiltonian: J ij : spin exchange parameter between the spin sites i and j! Ĥ = Ĥ0 + J ij Si. S! j i<j Long-range order J ij > 0 AFM J ij < 0 FM E α = α H α = E 0 + S 2 J ij σ i σ j i<j S: Spin hold by the magnetic center σ i = ±1 (up or down spin) Example of a spin-half dimer (S = ½) To estimate the J 12 value, 2 total energy calculations are needed: σ 1 = +1 σ 2 = +1 σ 1 = +1 σ 2 = -1 J 12 = 2( E FM E AFM ) E FM = E 0 + 1 4 J 12 E AFM = E 0 + 1 4 J 12

Estimation of J in NiO Ni 2+ -> S = 1 E α = α H α = E 0 + S 2 J ij σ i σ j i<j 2 inequivalent Ni sites in the rhombohedral unit cell (S.G. R-3m) J: magnetic coupling defined by Ni 1 -O-Ni 2 path (angle : 180 ) 6J / unit cell

Estimation of J in NiO Ni2+ -> S = 1 2 inequivalent Ni sites in the rhombohedral unit cell (S.G. R-3m) Eα = α H α = E 0 + S2 J ijσ iσ j J: magnetic coupling defined by Ni1-O-Ni2 path (angle : 180 ) i< j 6J / unit cell E AFM = E 0 6J E FM = E 0 + 6J -19.54909823 ev -19.30675287 ev

Estimation of J in NiO Ni2+ -> S = 1 2 inequivalent Ni sites in the rhombohedral unit cell (S.G. R-3m) Eα = α H α = E 0 + S2 J ijσ iσ j J: magnetic coupling defined by Ni1-O-Ni2 path (angle : 180 ) i< j 6J / unit cell E AFM = E 0 6J E FM = E 0 + 6J -19.54909823 ev -19.30675287 ev J = (E FM E AFM ) /12 = 20.2 mev Exp.: J = 19.01 mev (Hutchings M. T., Samuelsen E. J., Phys. Rev. B 6, 9, 1972, 3447)

Collinear magnetism in VASP INCAR file Spin-polarized calculation: ISPIN = 2 Initial magnetic moment: MAGMOM = 2.0 2.0 2*0 Warning: Too small initial magnetic moments will/may lead to a non-magnetic solution Badly initialized calculations take longer to converge (local minima) Convergency of k-mesh, ENCUT and choice of POTCAR Comparing the total energies from calculations with different U eff values is meaningless! VASP can also treat non-collinear magnetic systems!

Noncollinear magnetism in VASP INCAR file Illustration with fcc Ni Replace ISPIN = 2 and MAGMOM = 1.0 by: leads to or with MAGMOM = 1.0 0.0 0.0 or with MAGMOM = 0.0 1.0 0.0

Estimation of the magnetic anisotropy Estimation of the Magneto-crystalline Anisotropy Energy (MAE) of CuO Allows to define the magnetization easy and hard axes Here we have considered the following expression: MAE = E[u v w] E[easy axis] E[uvw] is the energy deduced from spin-orbit calculations with the magnetization along the [uvw] crystallographic direction MAE (μev) Hard axis Easy axis Hard axis Magnetization axis NEED TO SWITCH ON THE SPIN-ORBIT: LSORBIT =.TRUE [1] X. Rocquefelte, P. Blaha, K. Schwarz, S. Kumar, J. van den Brink, Nature Comm. 4, 2511 (2013)

Estimation of the magnetic anisotropy Estimation of the Magneto-crystalline Anisotropy Energy (MAE) of CuO Allows to define the magnetization easy and hard axes [10-1] Here we have considered the following expression: MAE = E[u v w] E[easy axis] [010] [-10-1] [101] [0-10] E[uvw] is the energy deduced from spin-orbit calculations with the magnetization along the [uvw] crystallographic direction [-101] [1] X. Rocquefelte, P. Blaha, K. Schwarz, S. Kumar, J. van den Brink, Nature Comm. 4, 2511 (2013)

Estimation of the magnetic anisotropy LiNbO 3 -type InFeO 3 : Room-Temperature Polar Magnet without Second-Order Jahn Teller Active Ions Fujita, T. Kawamoto, I. Yamada, O. Hernandez, N. Hayashi, H. Aakamatsu, W. Lafargue-Dit-Hauret, X. Rocquefelte, M. Fukuzumi, P. Manuel, A. J. Studer, C. Knee, K. Tanaka Chemistry of Materials accepted (2016).

AND MORE VASP allows to constrain the magnetic moment using the following lines in INCAR: u Switch on constraints on magnetic moments u Integration radius to determine local moments u Weight in penalty function u Target direction A penalty function is added to the system which drives the integrated local moments into the desired direction Warning: The penalty function contributes to the total energy.

AND MORE

If convergence is bad?

Let s now play with VASP