K x,y f x dx is called the integral transform of f(x). The function

Similar documents
Math 266, Practice Midterm Exam 2

The Laplace Transform

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

LAPLACE TRANSFORMS AND THEIR APPLICATIONS

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Revisiting what you have learned in Advanced Mathematical Analysis

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

3.4 Repeated Roots; Reduction of Order

1 Finite Automata and Regular Expressions

LAPLACE TRANSFORMS. 1. Basic transforms

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Chapter4 Time Domain Analysis of Control System

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

Systems of First Order Linear Differential Equations

Section 2: The Z-Transform

Transfer function and the Laplace transformation

LaPlace Transform in Circuit Analysis

Relation between Fourier Series and Transform

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Systems of First Order Linear Differential Equations

Chapter 12 Introduction To The Laplace Transform

A Tutorial of The Context Tree Weighting Method: Basic Properties

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

Jonathan Turner Exam 2-10/28/03

Poisson process Markov process

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

2 T. or T. DSP First, 2/e. This Lecture: Lecture 7C Fourier Series Examples: Appendix C, Section C-2 Various Fourier Series

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

Lecture 26: Leapers and Creepers

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Bicomplex Version of Laplace Transform

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

Trigonometric Formula

CSE 245: Computer Aided Circuit Simulation and Verification

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Elementary Differential Equations and Boundary Value Problems

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Ma/CS 6a Class 15: Flows and Bipartite Graphs

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

Final Exam : Solutions

Introduction to Laplace Transforms October 25, 2017

TOPIC 5: INTEGRATION

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

A modified hyperbolic secant distribution

Chap.3 Laplace Transform

can be viewed as a generalized product, and one for which the product of f and g. That is, does

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

EXERCISE - 01 CHECK YOUR GRASP

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

Wave Equation (2 Week)

graph of unit step function t

Charging of capacitor through inductor and resistor

UNSTEADY HEAT TRANSFER

SE1CY15 Differentiation and Integration Part B

Process Modeling of Short-Circuiting GMA Welding and Its Application to Arc Sensor Control

Lecture 21 : Graphene Bandstructure

Ch 1.2: Solutions of Some Differential Equations

Midterm exam 2, April 7, 2009 (solutions)

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

ELECTRIC VELOCITY SERVO REGULATION

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

4.8 Improper Integrals

EXERCISE - 01 CHECK YOUR GRASP

Discussion 06 Solutions

Chapter 4 Circular and Curvilinear Motions

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

5.1-The Initial-Value Problems For Ordinary Differential Equations

EEE 303: Signals and Linear Systems

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

where: u: input y: output x: state vector A, B, C, D are const matrices

6.8 Laplace Transform: General Formulas

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

Chapter 3. The Fourier Series

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

0 for t < 0 1 for t > 0

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties

H is equal to the surface current J S

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

Lecture 2: Current in RC circuit D.K.Pandey

Physics 160 Lecture 3. R. Johnson April 6, 2015

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

Transcription:

APACE TRANSFORMS Ingrl rnform i priculr kind of mhmicl opror which ri in h nlyi of om boundry vlu nd iniil vlu problm of clicl Phyic. A funcion g dfind by b rlion of h form gy) = K x,y f x dx i clld h ingrl rnform of fx). Th funcion Kx, y) i clld h krnl of h rnform. Th vriou yp of ingrl rnform r plc rnform, Fourir rnform, Mllin rnform, Hnkl rnform c. plc rnform i widly ud ingrl rnform in Mhmic wih mny pplicion in phyic nd nginring. I i nmd fr Pirr-Simon plc, who inroducd h rnform in hi work on probbiliy hory. Th plc rnform i ud for olving diffrnil nd ingrl quion. In phyic nd nginring i i ud for nlyi of linr im-invrin ym uch lcricl circui, hrmonic ocillor, opicl dvic, nd mchnicl ym. Dfiniion Th plc rnform of funcion f), dfind for ll rl numbr, i h funcion F), dfind by: - {f )} = F f d. Th prmr i complx numbr. i clld h plc rnformion opror. Trnform of lmnry funcion. {} =, >. Proof: - {}.d = if > n! n+ whn n =,,,... = Γn+ ohrwi n+ n. Proof:

- n = d = + - n - n n n- n n- n n- n- = =...=... =, > -. Proof: - n! n+ if n i poiiv ingr n n- =... = n+ ohrwi n+ = d = - - d -- = - =, > - - in = +, Proof:. in, co = +, Proof:. co in co in d - - -co+in cod +, + inh = -, 6.

Proof: inh, coh =, - 7. Proof: coh, Propri of plc rnform. inriy propry. If, b, c b ny conn nd f, g, h b ny funcion of hn f +bg -ch = f +b g -c h Bcu of h bov propry of, i i clld linr opror.. Fir hifing propry. If {f )} = F) hn f = F -. Proof: -- f = f d = f d - -r = f d whr r = -. = Fr) = F -. Applicion of hi propry ld o h following rul.

= n. - n! n+. whn n =,,,... ohrwi b inb = - +b. - cob = - +b. inhb = - b. - b - cohb = - -b whr in ch c >. Γ n+ - n+ Exmpl: Find h plc rnform of h following.. Sin Soluion: in 6 in in in in in 6 6 8.. in in in 6 6 6. inco Soluion: inco in + in 9

. co Soluion: co co., f ),, Soluion: - - - f)..d.d d Exrci: Find h plc rnform of. in.. coh in. f in,,. Trnform of ingrl If f) = F hn fu)du = F Proof:

φ = f u du, hn φ = f nd φ =. \ φ = φ -φ Hnc φ = φ i.. f udu = F. Muliplicion by n = F If f n n n d hn f = - F n, n =,,,... d Proof: - W hv f d = F d d Byibniz' rul for diffrniion undr h ingrl ign d - d Conidr f d = F - f d = - d f d = - F d F d d which prov h horm for n =. Now um h horm o ru for n = my), o h m - m d f d = - F m d m m+ d - m d Thn f d = - F m+ d d By ibniz' rul, m m+ - m+ d f d = - F m+ d m

Thi how h if h horm i ru for n = m, i i lo ru for n = m+. Bu i i ru for n =. Hnc i i ru for n = + =, n = + = nd o on. Thu h horm i ru for ll poiiv ingrl vlu of n. Diviion by If f = F hn f = Fd Proof: - W hv F = f)d - Conidr F d f)d d - f)dd f) Exmpl: Find h plc rnform of. co Soluion: co = + d co d. - in Soluion: chnging h ordr of ingrion - f) d d i indpndn of - + +

in 9 d 6 in d 9 9 Now uing fir hifing propry,w g 6 6 in 9. co-cob Soluion: co-cob = - + +b co-cob = - d + +b +b = log + Exrci: Find h plc rnform of h following funcion.. in. - in in.. -cob. - co Priodic funcion: Suppo h h funcion Fi ) priodic wih priod. Thn i plc rnform i givn by F ) F ) d F ) d. u pu n. n) n n Thn F ) xp n ) F n) d. n

Bu F n) F ), w g F ) xp n ) xp ) F ) d xp ) xp ) F ) d w Thorm If ) n n xp ) F ) d. F h plc Trnform nd if n F ) d F ) F ), F ). w Exmpl ), c Find h rnform of h funcion, c) ; c, c), c)., c c c d, ). c c c ) Exmpl b) Find h rnform of h qur-wv funcion, c Q, c) ; Q c, c) Q, c)., c c Q c c c d d c c c / c ) ) c, ) nh. c c c c / ) ) Exrci:. Dfin ringulr-wv funcion T, c ), c T, c) ; T c, c) T, c). c, c c plc Trnform. by Skch T, c) nd find i

G by G ), c; G c) G ),. Skch h. Dfin h funcion ) grph of G ) nd find i plc Trnform.. Dfin h funcion ) grph of Snd ) find i plc Trnform. S by S ), ; S ) S ),. Skch h, dcribd blow, nd find i. Skch hlf-wv rcificion of h funcion in in, rnform. F ) ; F F ). w, w F whr F ) for nd F ) F ).. Find ) A Sp Funcion: Applicion frqunly dl wih iuion h chng bruply pcifid im. W nd noion for funcion h will uppr givn rm up o crin vlu of nd inr h rm for ll lrgr. Th funcion w r bou o inroduc ld u o powrful ool for conrucing invr rnform., u dfin funcion ) by Th dfiniion y h ) )., i zro whn h rgumn i ngiv nd ) i uniy whn h rgumn i poiiv or i zro. I follow h, c c)., c Th plc Trnform of c) F c) i c) F c) F c) d. c Now pu c v in h ingrl o obin cv) c c) F c) F v) dv F ). Thorm f ) F ), If if c, nd if ) c, f ) F c) c). Exmpl ): c Fb ignd vlu no mr wh on) for

, whr y ). 6, y ) ) ) 6 ) ) 6 ) ) Find y) nd ) y 6 ). Exmpl b) : Find nd kch funcion g ) for which g ). g ) ) ) ) ), 7,, g) Exrci:. Skch h grph of h givn funcion for. - i) ) ) ). ii). Expr ) ). Fin rm of h funcion nd find ) i), F )., ii), F ),. 7, iii) in, F )., F.

. Find nd kch n invr plc rnform of. Evlu ). ) ). If Fi ) o b coninuou for nd F ), vlu F), F), F ).. INVERSE APACE TRANSFORMS Inroducion: {f)} = F). Thn f) i dfind h invr plc rnform of F) nd i dnod by - {F)}. Thu - F) = f)..) - i known h invr lplc rnform opror nd i uch h In h invr problm ), F) i givn known) nd f) i o b drmind. Propri of Invr plc rnform For ch propry on plc rnform, hr i corrponding propry on invr plc rnform, which rdily follow from h dfiniion. ) inriy Propry - {F)} = f) nd - {G)} = g) nd nd b b ny wo conn. Thn ) Shifing Propry - [ F) b G)] = - {F)} b - { G)} If - {F)}=f) hn - [F-)]= - {F)} ) Invr rnform of driviv If - {F)}=f) hn - {F n )}= ) n n { F )}

) Diviion by If - {F)}=f) hn F) f ) d Tbl of Invr plc Trnform of om ndrd funcion F) f ) F ),,, Co Sin,,, Sin h Co h, n n =,,,,..., n n > - n n! n n Exmpl i). Find h invr plc rnform of h following: b ii) 9 iii) 9

Soluion: ) i b b b ii in co ) 9 9 9 8 ) iii h h in co in co Exrci: Find h invr plc rnform of h following 6 ) i ii) 6 ) iii) 8 iv) 8 Evluion of - F ) W hv, if { f)} = F), hn [ f)] = F ), nd o - F ) = f) = - F) Exmpl Evlu:. - - Givn Uing h formul g w nd n king nd n n n,!

Givn - Evlu:. - - - in co )Evlu : - h h in co Exrci Find h invr plc rnform of h following i) 6 ii) 9 7 iii) ) iv) ) ) INVERSE APACE TRANSFORM OF - F)

Evluion of - [ - F)] W hv, if {f)} = F), hn [f-) H-) = - F), nd o - [ - F)] = f-) H-) Exmpl ) Evlu : Hr, F ) Thrfor f ) F ) 6 Thu f ) H ) H 6 ) Evlu : Givn f H f H Hr f ) Now rlion ) rd Givn in f ) H co H co H in co co H ) Exrci: Find h invr plc rnform of h following i) coh ii)

iii) iv) INVERSE APACE TRANSFORM BY PARTIA FRACTION AND OGARITHMIC FUNCTION Exmpl ) ) ) F)= ) ) By pplying pril frcion w g ) ) = ) ) ) ) ) ) B A B A = ) ) B A pu = B B pu =- A A Thrfor F)= ) ) F)= ) ) Tking invr lplc rnform, w g )} { F ) ) = Evlu:. hv w C B A

Thn +- = A+) -) + B -) + C +) For =, w g A =, for =, w g C = nd for = -, w g B = -. Uing h vlu in ), w g Evlu:. Conidr C B A Thn + = A + ) + B + ) + ) + C + ) For = -, w g A =, for = -, w g C = - Compring h cofficin of, w g B + C =, o h B =. Uing h vlu in ), w g Hnc Evlu:. ) D C B A Hnc = A + ) + ) + B -) + )+C + D) )

For =, w g A = ¼; for = -, w g B = ¼; compring h conn rm, w g D = A-B) = ; compring h cofficin of, w g = A + B + C nd o C = ½. Uing h vlu in ), w g Tking invr rnform, w g co h co co Evlu:. Conidr in in in in h

Trnform of logrihmic nd invr funcion W hv, if { f)} d d d d F),hn f F Hnc. F f ) Exmpl ) Evlu : log b F ) log log b d Thn F d b So h Thu or f f d d F b b log b b b ) Evlu n F ) n Thn or f or d d f F d d in F in in o h Invr rnformof Sinc f F F d w hv F f d

Exmpl: : ) Evlu co in in ) d F Thn F f o h F dno u w g Uing hi, pr. ingrion by on, : ) - d d Hnc hv w Evlu CONVOUTION THEOREM AND.T. OF CONVOUTION INTEGRA

Th convoluion of wo funcion f) nd g) dnod by f) g) i dfind f) g) = f u) g u) du Propry: f) g) = g) f) Proof :- By dfiniion, w hv f) g) = f u) g u) du Sing -u = x, w g f) g) = f x) g x) dx) = g x) f x) dx g ) f ) Thi i h dird propry. No h h oprion i commuiv. CONVOUTION THEOREM: [f) g)] = {f)}.{g)} Proof: u dno f) g) = ) = f u) g u) du Conidr [ )] [ f u) g u)] d = f u) g u) du ) W no h h rgion for hi doubl ingrl i h nir r lying bwn h lin u = nd u =. On chnging h ordr of ingrion, w find h vri from u o nd u vri from o.

u u= =u = u= Hnc ) bcom [)] = u u u = g u) f u) g u) ddu u) f u) d du u u = g u) v f v) dv du, whr v = -u u = g u) du v f v) dv = g). f) Thu f). g) = [f) g)] Thi i dird propry. Exmpl:. Vrify Convoluion horm for h funcion f) nd g) in h following c : i) f) =, g) = in i) Hr, ii) f) =, g) = f g = f u) g u) du = u in u) du Employing ingrion by pr, w g o h f g = in

[f g] = ) ) Nx conidr f). g) = ) ) From ) nd ), w find h [f g] = f). g) Thu convoluion horm i vrifid. ii) Hr f g = u u du Employing ingrion by pr, w g o h f g = [f g] = ) ) Nx f). g) = ) ) From ) nd ) w find h [f g] = f). g) Thu convoluion horm i vrifid.. By uing h Convoluion horm, prov h f ) d f ) u dfin g) =, o h g-u) = Thn f ) d f ) g u) d [ f g]

= f). g) = f). Thu f ) d f ) Thi i h rul dird.. Uing Convoluion horm, prov h u in u) du ) ) u dno, f) = - g) = in, hn u u) du f u) g in u) du = f). g) = ) ) = ) ) Thi i h rul dird.

) Employ plc Trnform mhod oolv hingrl quion. uin u f) l f du Tking plc rnform of h givn quion, w g f) f u in u du By uing convoluion horm, hr, w g f) f ) in f ) Thu f ) or f ) Thi i h oluion of h givn ingrl quion. Exrci: Solv h following problm. Vrify convoluion horm for h following pir of funcion: i) f) = co, g) = cob ii) f) =, g) = - iii) f) = g) = in. Uing h convoluion horm, prov h following: u i) u) co udu ) ) u ii) u) u du )

) f ) f u u du ) f ' ) f u co u du, f ) Invr rnform of F) by uingconvoluion horm W hv, if ) F) nd g) G), hn f) g) f ) g ) F ) G ) nd o F ) G ) f ) g ) f ugu Thi xprion i clld du h convoluion horm for invr plc rnform Exmpl Employ convoluion horm o vlu h following : ) b u dno F), G ) b Tking hinvr, w g f) -, g) -b Thrfor, by convoluion horm, - b u bu b du u du b b b b

) u dno F), G ) Thn f) in, g) co Hnc by convoluion horm, ) - Hr in uco u du in in u du, co u u in by uing compound ngl in formul F), G ) Thrfor f), g) in By convoluion horm, w hv - u in u du u in u co u in co in co By mploying convoluion horm, vlu h following:

) ) ) b ) ) 6), b Applicion of plc rnform plc rnform i vry uful for olving linr diffrnil quion wih conn cofficin nd wih givn iniil condiion. W k h plc rnform of h diffrnil quion nd hn mk u of h iniil condiion, which rnform h diffrnil quion o n lgbric quion. Solv for plc rnform from hi lgbric quion nd h rquird oluion i obind by king h invr of hi rnform. plc rnform of driviv: f ' f f ). ''. f f f f ') ''' '. Problm: f f f f f '') nd o on.. Solv y '' y co givn ' y, y whn. Soluion: Tking plc rnform, On uing h iniil condiion, ' Y y y Y Y Tking invr,

y in. Solv '' ' ', givn y y y y 6y Soluion: Tking plc rnform, On uing h iniil condiion, ' Y y y Y y 6 Y Y 8 8 6 Rolving ino pril frcion, Y Tking h invr plc rnform, y ) y Exrci :- Solv h following: '' ' '. y y y y y,. y ''' y '' y ' y y y ' y '' Elcricl circui:, Conidr impl circui comprid of n inducnc of mgniud hnry ), rinc of mgniud R ohm), nd cpcinc of mgniud C frd) conncd in ri. If E i h mf vol) pplid o n RC circui, hn h currn i mpr) in h circui im i govrnd by h diffrnil quion, di q Ri E d C

dq Hr q i h chrgcoulomb) i rld o i hrough h rlion i. If q) hn h d bov quion cn b rwrin, di Ri i d E dx C Exmpl:. A R circui crri n mf of volg E E in, whr E nd r conn. Find h currn i in h circui if iniilly hr i no currn in h circui. Soluion: Th diffrnil quion govrning h currn i i, di Ri E in d or, di E R i in d Tking plc rnform on boh id, E I i) I, whr R Applying h iniil condiion, i), w g, I E By rolving ino pril frcion, E I Tking invr plc rnform, E i in co. A rinc R in ri wih n inducnc i conncd wih mf E ). Th currn i di i givn by, Ri E). Th wich i conncd im nd diconncd d

im Find h currn i in rm of, givn h h mf i conn whn h wich i on. Soluion: E E ) Hr conidr E conn. E ) E H ) H ), Th govrning quion bcom, di R E i H ) H ) d Tking plc rnform nd pplying h iniil condiion, i), E I I, whr E E I ) R Tking invr plc rnform, ) R E i H ) R E i R E R Exrci:. A volg E i pplid o circui of inducnc nd rinc R. Show E R h currn im i R.. A impl lcricl circui coni of rinc R nd inducnc in ri wih conn mf E. If h wich i clod whn, find h currn ny im. M pring ym

Conidr pring of lngh x, id on nd o uppor nd h ohr nd i id o fixd m m which i fr. If F i h forc cing on h objc, hn from Nwon cond lw of moion, d x m kx d Suppo h mdium hrough h up i workd i riing wih vlociy of x' ) w hv, d x m kx cx ' d mx '' ) cx" ) kx ) Th uxiliry quion i givn by, md cd k Th roo of h qudric quion r, c c mk D m Th vlu of c mk drmin h niiviy of h mdium.... c c c mk impli moion i undr-dmpd. mk impli h moion i criiclly dmpd. mk impli h moion i ovr-dmpd. Hr k i h iffn of h pring nd cn b givn by h wigh of h objc pr uni ol w lngh of h pring, k, whr b i h lngh of h pring nirly nd w mg b. A pring cn xnd cm whn.kg of m i chd o i. I i upndd vriclly from uppor nd ino vibrion by pulling i down cm nd impring vlociy of cm / vriclly upwrd. Find h diplcmn from i quilibrium. Soluion: x ) b h diplcmn from i quilibrium. Hr b cm, m gm, x) cm, x') cm / W cn hu clcul h vlu of k, i.. k dy / cm Th quion of moion i, x'' ) x ) x'' ) 9 x ) Tking plc rnform,

X x) x') 9X X 9 9 Tking h invr plc rnform, x ) co7 in 7 7 7. A pring of iffn k h m m chd o on nd. I i cd upon by xrnl forc Ain. Dicu i moion in gnrl. Soluion: W know from h Nwon lw of moion, x) x, x') v k x'' ) x ) Ain m Tking plc rnform, k A X x) x') X m m By pplying h iniil condiion, k m A X x v m k m Tking h invr plc rnform, k m d x m kx in, d k in Ain k ) co m A x x v m k m k k m m Exrci:. A pring i rchd 6 inch by pound wigh. h wigh b chd o h pring nd pulld down inch blow h quilibrium poin. If h wigh id rd wih n upwrd vlociy of f pr cond, dcrib h moion. No dmping or imprd forc i prn.

. A pring i uch h lb wigh rch i 6 inch. An imprd forc co8 i cing on h pring. If h pound wigh i rd from h quilibrium poin wih n upwrd vlociy of f pr cond, dcrib h moion.