CMOS Analog Integrated Circuits: Models, Analysis, & Design

Similar documents
MOS Transistor I-V Characteristics and Parasitics

The Devices. Devices

6.012 Electronic Devices and Circuits Spring 2005

The Devices. Jan M. Rabaey

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

MOSFET: Introduction

Integrated Circuits & Systems

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

FIELD-EFFECT TRANSISTORS

Microelectronics Part 1: Main CMOS circuits design rules

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Lecture 5: CMOS Transistor Theory

ECE 342 Electronic Circuits. 3. MOS Transistors

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

EE 560 MOS TRANSISTOR THEORY

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Introduction and Background

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 4 Field-Effect Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 12: MOSFET Devices

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

ECE315 / ECE515 Lecture-2 Date:

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Nanoscale CMOS Design Issues

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

ECE-305: Fall 2017 MOS Capacitors and Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOS Transistor Theory

The Devices: MOS Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Transistor Theory

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Chapter 5 MOSFET Theory for Submicron Technology

Device Models (PN Diode, MOSFET )

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Chapter 13 Small-Signal Modeling and Linear Amplification

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Figure 1: MOSFET symbols.

MOS Transistor Properties Review

Practice 3: Semiconductors

The Gradual Channel Approximation for the MOSFET:

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Device Models (PN Diode, MOSFET )

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

6.012 Electronic Devices and Circuits

University of Toronto. Final Exam

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Lecture #27. The Short Channel Effect (SCE)

Lecture 3: CMOS Transistor Theory

VLSI Design The MOS Transistor

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Chapter 2 MOS Transistor theory

Section 12: Intro to Devices

EE105 - Fall 2006 Microelectronic Devices and Circuits

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

VLSI Design and Simulation

EPC2052 Enhancement Mode Power Transistor

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

EPC2053 Enhancement Mode Power Transistor

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

1. The MOS Transistor. Electrical Conduction in Solids

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Semiconductor Physics Problems 2015

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Microelectronics Main CMOS design rules & basic circuits

Lecture 4: CMOS Transistor Theory

N Channel MOSFET level 3

in Electronic Devices and Circuits

Non Ideal Transistor Behavior

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

ECE 497 JS Lecture - 12 Device Technologies

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Metal-oxide-semiconductor field effect transistors (2 lectures)

Lecture 04 Review of MOSFET

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

EECS130 Integrated Circuit Devices

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

Long-channel MOSFET IV Corrections

Transcription:

CMOS Analog Integrated Ciruits: Models, Analysis, & Design Dr. John Choma, Jr. Professor of Eletrial Engineering University of Southern California Department of Eletrial Engineering-Eletrophysis University Park; Mail Code: 071 os Angeles, California 90089-071 13-740-469 [OFF] 66-915-7503 [HOME] 66-915-0944 [FAX] john@almaak.us.edu (E-MAI) EE448 MOS Ciruit evel Models Fall 001

eture Overview Stati Model Cutoff Region Ohmi (Triode) Region Model Saturation Region Model Subthreshold Model Short Channel Effets In Saturation Channel ength Modulation Substrate/Bulk Phenomena Mobility Degradation Carrier Veloity Saturation Small Signal Model In Saturation Forward Transondutane Bulk Transondutane Capaitanes Sample Ciruit Analysis (Inverter) Gain Bandwidth

N Channel MOSFET d d S G D Silion Dioxide T ox X d N Soure N Drain W P Type Substrate (Conentration = N D m -3 ) B V gd G I g I d I b B D V ds I s = I d I g I b I g 0 I b 0, for V bs < 0 V gs I s V bs S V ds I s I d = V gs V gd 3

P Channel MOSFET d d S G D Silion Dioxide T ox X d P Soure P Drain W N Type Substrate (Conentration = N D m -3 ) B V dg I d D I s = I d I g I b I g 0 G I g I b B V sd I b 0, for V sb < 0 V sg I s V sb S V sd I s I d = V sg V dg 4

Charateristi Curves: Cutoff And Ohmi Regimes Cutoff Regime: I d = 0 Threshold Voltage, Funtion Of Bulk Soure Voltage V hn V gs < V hn Ohmi Regime: I d = K n W V gs V hn and V ds < V gs V hn V ds V gs V hn V ds K n = µ n C ox = µ n ε ox (Hundreds Of µmhos/volt) T ox Comments W/ Is Gate Channel Aspet Ratio, A Designable Parameter V ds = V gs V gd < V gs V hn Implies V gd > V hn Temperature Effets (Holes And Eletrons): µ(t) µ(t o ) T o T 3/ Resistane For Small Drain Soure Voltage: I d V ds 1 = K W R n ds V gs V hn V ds = I d V ds V gs V hn V ds V gs V hn V ds I d V ds 5

Charateristi Curves: Saturated Regime Saturation Regime: I d = V dss I dss K n = K n W V gs V hn & V ds V gs V hn V gs V hn V gs V hn Drain Saturation Voltage W V dss Comments Square aw Voltage Controlled Current Soure Drain Current Shows Negative Temperature Coeffiient Beause Of Its Proportionality To Mobility Differential Current Of Two Mathed Devies Is inear With Differential Gate Soure Voltage V DM, Provided Common Mode Gate Soure Voltage Is A Constant V CM Drain Saturation Current I d1 I d = K n W V gs1 V hn V gs V hn I d1 I d = K n W I d1 I d = K n W V gs1 V gs V CM V hn V DM V hn V gs1 V gs 6

Simple Differential Pair V DD Inputs R V o R V gs1 = V CM V DM I d1 I d V gs = V CM V DM V DM M1 M V DM V gs1 V gs = V CM V gs1 V gs = V DM V CM Response I d1 I d = K W n V CM V hn V DM V o = R I d1 I d = K n R W V CM V hn V DM Note Differential Output Current And Voltage Are inear With Respet To Differential Input Voltage Without Invoking Small Signal Approximation 6a

Charateristi Curves: Subthreshold Regime Subthreshold Regime: V gs < V hn n V T & V ds 3 V T V T = k T q = 6 mv @ 7 8C 1. < n <.0 I d = K n W nv T ε e ( V gs V hn ) / nv T Comments Bipolar Type I V Ation Indigenous To Subthreshold Regime Subthreshold Operation Corresponds To Gate Channel Interfae Potentials ying Between One And Two Fermi Potentials Useful Only For ow Speed, ow Power Appliations 7

Sample Simplified MOS Stati Charateristis Drain Current (miroamperes) 700 600 5 volts 500 400 300 00 Ohmi Regime Drain Saturation Current 4 volts Saturation Regime K n W = 80 µmho/volt V hn = 1. volts 3 volts 100 Gate-Soure Voltage = volts 0 0 0.4 0.8 1. 1.6.4.8 3. 3.6 4 4.4 4.8 Drain-Soure Voltage (volts) 8

Cutoff Regime S V gs G V ds SiO D I d Depletion V ds 0 0 < V gs < V hn N Soure Fixed Immobile Charges DEPETION AYER, V > 0 ds DEPETION AYER, V = 0 ds N Drain V bs 0 Zero Current V gs = V ox V y V ox Voltage Aross Oxide P Type Substrate V y Interfae Potential V bs B 9

Channel Inversion: Ohmi Regime S G D N Soure P Type Substrate N Drain V gs > V hn V ds = 0 S G D V gs > V hn N Soure N Drain 0 V ds V gs V hn V dss DV ds V gd > V hn ' D P Type Substrate Metal or Polysilion Inversion ayer Silion Dioxide Depletion 10

Channel Inversion: Saturation Regime S G D N Soure P Type Substrate N Drain V gs > V hn 0 V ds = V gs V hn V gd V hn S G D V gs > V hn N Soure N Drain 0 V ds > V gs V hn V gd < V hn V dss V ds ' P Type Substrate Metal or Polysilion Inversion ayer Silion Dioxide Depletion 11

S Channel ength Modulation G D N Soure N Drain V dss V ds ' D Modified Saturation Regime Current I d V ds > V dss = I dss = K n Channel Modulation Voltage W V gs V hn 1 V ds V dss V λ V λ qn = A V ε ds V dss V j s (Typially Under 0 Volts And As Small As 1/3 Volt For Deep Submiron MOSFETs) V dss = V gs V hn V j = k T q ln N D N A N ib 1

Channel ength Modulation Parameters Modified Saturation Regime Current I d V ds > V dss = I dss = K n W V gs V hn 1 V ds V dss V λ V dss = V gs V hn V j = Parameters Average Substrate Impurity Conentration N A e s k T q ln N D N A N ib Dieletri Constant Of Silion (1.05 pf/m) q Eletroni Charge Magnitude V l Channel ength Modulation Voltage V j Built In Substrate Drain/Soure Juntion Potential Note arge Channel ength Redues Channel Modulation Small Substrate Conentration Inreases Channel Modulation V λ = qn A ε s V ds V dss V j 13

Substrate/Bulk Phenomena Effet On Threshold Voltage I d V h = V ho V θ V F V T 1 V θ = qn Aε s T = q N A ε ox s (High Hundreds Of µvolts) V F = V T ln N A (Few Tenths Of Volts) Parameters Fermi Potential; Renders Channel Surfae Intrinsi V F N ib Intrinsi Carrier Conentration In Substrate Dieletri Constant Of Silion Dioxide (345 ff/m) εox = K n C ox W N ib V gs V hn 1 ε ox V ds V dss V λ V bs V F V T 1 Note Small Oxide Thikness Redues Threshold Modulation Small Substrate Conentration Redues Threshold Modulation 14

Threshold Voltage Modulation Threshold Corretion (volts) 0.7 Oxide Thikness = 1,500 A 0.6 0.5 N ib = 10 10 m 3 ; N A = (10) 14 m 3 0.4 750 A 0.3 0. 50 A 100 A 0.1-6 -5-4 -3 - -1 0 Bulk Soure Voltage, Vbs (volts) 0 15

Mobility Degradation Due To To Vertial Field Eletri Field Problems Thin Oxide ayers Condue arge Gate -To- Channel Fields For Even Small -To- Moderate Gate Soure Voltages These Enhaned Fields Impart Inreasing Energies To Carriers, Thereby Causing More Carrier Collisions And Degraded Mobilities Mobility: µ neff 1 µ n V gs V hn V E V E (500)(106 )T ox (ow Hundreds Of Volts) Parameters Effetive Carrier Mobility In Channel µ neff V E Vertial Field Degradation Voltage Parameter Crude One Dimension Approximation To Two Dimensional Problem in MKS Units Yields In Volts T ox V E 16

Impat Of Of Mobility Degradation Stati Drain Current K n = µ n C ox K neff = µ neff C ox I d = K n W V gs V hn 1 1 V gs V hn V E V ds V dss V λ Other Effets Redued Bandwidth And Inreased Carrier Transit Time Smaller Current For Given Gate Soure Bias Redued Forward Transondutane 17

Mobility Degradation Due To To ateral Field Eletri Field Problems Short Channels Condue arge Drain -To- Soure Fields For Even Small -To- Moderate Drain Soure Voltages These Enhaned Fields Impart Inreasing Energies To Carriers, Thereby Causing More Carrier Collisions And Degraded Mobilities At Very arge Horizontal Fields, Carrier Veloities Ultimately Saturate To A Value Of v sat, Whih Is About 0.1 µm/psec Saturation Ours When Horizontal Field, E h,equals Or Exeeds A Critial Value,, Whih Is About 5 V/µm Mobility And Field µ ne E 1 v sat = µ n E v = µ ne E h µ n = E h E E h V gs V hn E µ n E h E 1 h E v sat E h 18

Veloity Mobility Field Relationships Carrier Veloity (µm/pse) 0.1 Normalized Carrier Mobility 1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.0 0.01 0 Carrier Veloity Normalized Mobility 0 5 10 15 0 5 30 35 40 45 50 ateral Eletri Field (V/µm) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0.1 0 18a

Mobility And ateral Field Mobility And Field µ ne 1 µ n E h E 1 µ n V gs V hn E = 1 µ n V dss E E h V gs V hn = V dss Eletri Field Problems Crude Approximation For Horizontal Field, Free Carriers Exist Only Over Channel Where Voltage With Respet To The Soure Is At Most V dss = V gs V hn Channel ength,, Should Be Effetive Channel ength, ', But This Shrinkage Is Already Aounted For By Channel ength Modulation Voltage Parameter, V λ E Is About 1.75 Volts For = 0.35 µm E h 19

Volt Ampere Impat Of Of High ateral Field Stati Drain Current Very High Fields V gs V hn >> E K n = µ n C ox K neff = µ neff C ox I d I d = K n W WC ox v sat (V gs V hn ) 1 1 V gs V hn E V gs V hn 1 V ds V dss V λ V ds V dss V l Comments Drain Current Sales Approximately With W, As Opposed To W/ Drain Current Almost inear W/R To Gate Soure Voltage 0

MOS arge Signal Model C old D i d Stati Drain Current C gd C gs Gate-Drain Capaitane Gate-Soure Capaitane C gd r dd DBD r db C db Drain-Bulk Capaitane G C gs I d C db DBS r sb r bb B C sb C old C ols Soure-Bulk Capaitane Drain Overlap Capaitane Soure Overlap Capaitane r ss C sb r dd Drain Ohmi Resistane C ols S r ss r bb Soure Ohmi Resistane Bulk Ohmi Resistane DBD Bulk-Drain Diode r sb Bulk Spreading Resistane DBS Bulk-Soure Diode r db Bulk Spreading Resistane 1

Devie Capaitanes In In Saturation D G C old C gd i d r dd I d DBD C db r db C gd C old C old = W d C ox C gs = W C ox 3 A d C jo C db = 1 V bd V j d C gs r ss DBS C sb r sb r bb B C sb = A s W C jo 1 V bs V j C ols C ols = W d C ox C db C sb C gs S arge (Hundreds Of ff) arge (Hundreds Of ff) Moderate (High Tens Of ff) A d A s C jo Drain-Bulk Juntion Area Soure-Bulk Juntion Area Zero Bias Depletion Capaitane Density C gd, C old, C ols Small (Tens Of ff)

Approximate (ong Channel) Small Signal Model C old C gd D C db g mf I d V gs Q K n W I dq g mb I d = λ b g mf g mf v ga g mb v ba g o V bs Q G C gs v ga C ols S C sb v ba B λ b = g o I d V θ / V F V T V bsq V ds Q V λ V ds I dq V dss Assumptions All Series Ohmi Resistanes Are Negligible Transistor Operates In Saturation Regime "ong Channel" Approximation Invoked For Stati Drain Current Model To Be Used As A Preursor To Computer Based Studies 3

Short Channel Small Signal Model Drain Current: I d Intermediate Parameters: = K n W V gs V hn 1 1 f λ = V ds V dss V λ g mf = K W n V gs V hn E V ds V dss V λ f = V dss E I dq λ b = V θ / V F V T V bsq Forward Transondutane: g mfs = g mf 1 f λ 1 f 1 V dss /V λ 1 f λ f / 1 f Bulk Transondutane: g mbs = λ b g mfs Output Condutane: g o = V λ V ds I dq V dss 4

Hypothetial Devie Physial Parameters N A = 5 (10) 14 m 3 N D = 5 (10) 0 m 3 N ib = (10) 10 m 3 ε s ε ox = 1.05 pf/m = 345 ff/m µ n = 400 m / volt-se E = 4 volts / µm Devie Parameters T ox = 50 Angstroms = 0.35 µm V hn = 0.65 volts T = 300 8K W / = 5 Ciruit Parameters V ds = volts V gs = 1. volts V bs = 3 volts 5

Peripheral Calulations V F = 80.0 mv V j = 917.4 mv V u = 176.4 µv Stati Performane (Fermi Potential) (Juntion Potential) (Body Effet Potential) V hn = 685. mv (Compensated Threshold) V hn = 35. mv V dss = 514.8 mv (Drain Saturation Voltage) V = 669.7 mv λ E = 1.4 volts (Channel ength Voltage) (ateral Field Voltage) K n = 76.0 µmho / volt (Transondutane Parameter) f =.18 (Channel ength Parameter) λ f = 0.368 (ateral Field Parameter) Stati Drain Current I d = 18.9 µa I d = 430. µa (ong Channel Drain Current) (Short Channel Drain Current) Note Short Channel -To- ong Channel Ratio of.35; Ratio Is Generally Between 1.5 And 3.0 6

Small Signal Parameters Forward Transondutane g mf = 1.09 mmho g mf = 1.5 mmho (Inorporating Short Channel Effets) Note Short Channel -To- ong Channel Ratio of 1.14; Ratio Is Generally Between 0.5 And.0 Bulk Transondutane λ (10) 3 b = 5.0 g mb = 6.5 µmho (Ignoring Short Channel Effets) (Bulk Parameter) (Inorporating Short Channel Effets) Note Bulk Transondutane Is About 00 Times Smaller Than Forward Transondutane Drain Soure Condutane g o = 199.7 µmho (Inorporating Short Channel Effets) Corresponds To Shunt Output Resistane Of About 5 KΩ Mandates Condutane Enhanement Strategies When Designing High Performane Transondutors 7

V dd Devie Unity Gain Frequeny D C AC Short Ciruit gd C old I bias C big g mf v 1 g mb v g o i out i in i out i in G C gs C ols v 1 S v B i out = i in s g mf s C gd C old C gs C ols C gd C old ω T g mf C gs C ols C gd C old µ n V gs V hn 3 3 d Comments Unity Gain Frequeny Is Good Devie Figure Of Merit; Crude Ciruit Performane Figure Of Merit Result Assumes ω T C gd << g mf 8

Common Soure Inverter M V DD R eff R eff MD C V o MD C V os V s V GG V s Shemati Diagram AC Shemati Diagram 9

Inverter oad Resistane Calulations r ddl V x M I x v ga g mfl v ga g mbl v ba r ol v ba V x r ssl I x r bbl v ga = v ba = V x r ssl I x V x = r ssl r ddl I x r ol I x g mfl v ga g mbl v ba R eff V x I x = r ssl r ddl r ol 1 1 λ bl g mfl r ol 1 1 λ bl g mfl 30

Inverter Gain Calulations R' R out R eff V os V s MD C V os V s v ga g mfd v ga r ddd g mbd v ba r ssd r od R eff v ba r bbd C Ignore For ow Frequenies A v = V os V s = g mfd R eff 1 1 λ bd g mfd r ssd R eff r ddd r ssd r od g mfd R eff g mfd 1 λ bl g mfl A v 1 1 λ bl W d / W l / 31

Inverter Bandwidth Calulations r ddd R' V x I x v ga g mfd v ga g mbd v ba r od v ba r ssd r bbd B 3dB = 1 R out C = 1 R / R eff C 1 R eff C R / = V x I x = r ddd r ssd 1 1 λ bl g mfd r ssd r od B 3dB 1 R eff C 1 λ bl g mfl C GBP Av B 3dB = g mfd C 3