An Analysis of Katsuura s Continuous Nowhere Differentiable Function

Similar documents
Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

Chapter 1 The Real Numbers

Notes on uniform convergence

MATH 131A: REAL ANALYSIS (BIG IDEAS)

MA651 Topology. Lecture 9. Compactness 2.

Fractals list of fractals by Hausdoff dimension

Continuity. Chapter 4

Linear distortion of Hausdorff dimension and Cantor s function

Supremum and Infimum

Fractals list of fractals - Hausdorff dimension

NOTES ON DIOPHANTINE APPROXIMATION

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

Continuity. Chapter 4

Chapter 2 Metric Spaces

Chapter 8. P-adic numbers. 8.1 Absolute values

arxiv: v2 [math.ca] 4 Jun 2017

Formal Groups. Niki Myrto Mavraki

Some Background Material

Measurable Choice Functions

The Codimension of the Zeros of a Stable Process in Random Scenery

STAT 7032 Probability Spring Wlodek Bryc

Week 2: Sequences and Series

A CONTINUOUS AND NOWHERE DIFFERENTIABLE FUNCTION, FOR MATH 320

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS

Part 2 Continuous functions and their properties

HOMEWORK ASSIGNMENT 6

SYMMETRIC INTEGRALS DO NOT HAVE THE MARCINKIEWICZ PROPERTY

THE INVERSE FUNCTION THEOREM

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

CHAOTIC BEHAVIOR IN A FORECAST MODEL

The Foundations of Real Analysis A Fundamental Course with 347 Exercises and Detailed Solutions

On the coordinate functions of Lévy s dragon curve

Collatz cycles with few descents

MATH 409 Advanced Calculus I Lecture 7: Monotone sequences. The Bolzano-Weierstrass theorem.

UNIFORM BOUNDS FOR BESSEL FUNCTIONS

Estimates for probabilities of independent events and infinite series

SEPARABILITY AND COMPLETENESS FOR THE WASSERSTEIN DISTANCE

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

MATH 202B - Problem Set 5

Invariant measures for iterated function systems

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works.

Jónsson posets and unary Jónsson algebras

P-adic Functions - Part 1

The Measure Problem. Louis de Branges Department of Mathematics Purdue University West Lafayette, IN , USA

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

Definition 2.1. A metric (or distance function) defined on a non-empty set X is a function d: X X R that satisfies: For all x, y, and z in X :

Math212a1411 Lebesgue measure.

SOLUTION TO RUBEL S QUESTION ABOUT DIFFERENTIALLY ALGEBRAIC DEPENDENCE ON INITIAL VALUES GUY KATRIEL PREPRINT NO /4

Introduction and Preliminaries

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Analysis Qualifying Exam

DIFFERENTIABILITY OF A PATHOLOGICAL FUNCTION, DIOPHANTINE APPROXIMATION, AND A REFORMULATION OF THE THUE-SIEGEL-ROTH THEOREM

S. Mrówka introduced a topological space ψ whose underlying set is the. natural numbers together with an infinite maximal almost disjoint family(madf)

Conway s RATS Sequences in Base 3

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

Math 117: Infinite Sequences

Continuous functions that are nowhere differentiable

Nonarchimedean Cantor set and string

Solutions to Tutorial 8 (Week 9)

On distribution functions of ξ(3/2) n mod 1

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS

THE SET OF RECURRENT POINTS OF A CONTINUOUS SELF-MAP ON AN INTERVAL AND STRONG CHAOS

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

THE STONE-WEIERSTRASS THEOREM AND ITS APPLICATIONS TO L 2 SPACES

Introduction to Real Analysis Alternative Chapter 1

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

MORE ON CONTINUOUS FUNCTIONS AND SETS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

METRIC HEIGHTS ON AN ABELIAN GROUP

(a) For an accumulation point a of S, the number l is the limit of f(x) as x approaches a, or lim x a f(x) = l, iff

Infinite Continued Fractions

An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010

01. Review of metric spaces and point-set topology. 1. Euclidean spaces

van Rooij, Schikhof: A Second Course on Real Functions

MATH31011/MATH41011/MATH61011: FOURIER ANALYSIS AND LEBESGUE INTEGRATION. Chapter 2: Countability and Cantor Sets

Introduction to Hausdorff Measure and Dimension

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

Logical Connectives and Quantifiers

Assignment-10. (Due 11/21) Solution: Any continuous function on a compact set is uniformly continuous.

Maths 212: Homework Solutions

Approximation of the attractor of a countable iterated function system 1

Combinatorial Proof of the Hot Spot Theorem

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Part III. 10 Topological Space Basics. Topological Spaces

I. The space C(K) Let K be a compact metric space, with metric d K. Let B(K) be the space of real valued bounded functions on K with the sup-norm

Metric Spaces Lecture 17

A note on separation and compactness in categories of convergence spaces

TEST CODE: PMB SYLLABUS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

Filters in Analysis and Topology

Math212a1413 The Lebesgue integral.

A BOREL SOLUTION TO THE HORN-TARSKI PROBLEM. MSC 2000: 03E05, 03E20, 06A10 Keywords: Chain Conditions, Boolean Algebras.

Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming

Introductory Analysis I Fall 2014 Homework #9 Due: Wednesday, November 19

Rudiments of Ergodic Theory

Czechoslovak Mathematical Journal

MATHS 730 FC Lecture Notes March 5, Introduction

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

On the quantiles of the Brownian motion and their hitting times.

Transcription:

An Analysis of Katsuura s Continuous Nowhere Differentiable Function Thomas M. Lewis Department of Mathematics Furman University tom.lewis@furman.edu Copyright c 2005 by Thomas M. Lewis October 14, 2005

1 Introduction Explicit examples of continuous nowhere differentiable functions have been known since the 19th century. In 1872, for example, Karl Weierstrass, in a lecture before the Royal Academy of Science in Berlin, demonstrated that the function W (x) = a k cos(b k πx) k=0 is continuous but nowhere differentiable whenever 0 < a < 1, ab > 1 + 3π/2, and b > 1 is an odd integer. Weierstrass example was published in 1875 by Paul du Bois-Reymond. Because his was the first published example of a continuous nowhere differentiable function, Weierstrass is generally given credit for being the first to give such a construction. However examples of continuous nowhere differentiable functions had already been developed. Perhaps the first such construction was given by Bernard Bolzano, circa 1830. Bolzano s example is especially interesting in our present setting since it does not make use infinite series; his construction is essentially geometric. A fascinating account of the history of continuous and nowhere differentiable functions can be found in the master s thesis of Thim [9]. In 1991, Katsuura [7] published an example of a continuous nowhere differentiable function based on a fixed-point method. Let X = [0, 1] 2 denote the unit square of the plane and let K(X) denote the set of non-empty compact subsets of X. K(X) is a complete metric space in the Hausdorff metric (see, for example, Theorem 2.4.4 of Edgar [3]). Let A 1, A 2, and A 3 be affine contractions on X given by the following rules: for (x, y) X, let ) ( 2 x ( x A 1 (x, y) = 3, 2y 3 ( 2 + x A 3 (x, y) = 3, 1 + 2y 3 These maps are illustrated in Figure 1. Given F K(X), let, A 2 (x, y) = ). A(F ) = A 1 (F ) A 2 (F ) A 3 (F ). Let G 0 = {(x, x) : x [0, 1]} and, for k 1, let G k = A 1 (G k 1 ) A 2 (G k 1 ) A 3 (G k 1 ). 1 3, 1 + y 3 ),

Figure 1: A 1 maps the unit square onto the green region by contraction; A 2 maps the unit square onto the blue region by contraction and reflection; and A 3 maps the unit square onto the red region by contraction. Figure 2: The functions f 0, f 1, and f 2 respectively. Katsuura showed that A is a contraction map on K(X). As such, there is a unique fixed point G of A in K(X), and G k G in the Hausdorff metric. For each k 0, G k is the graph of a continuous function, which we will denote by f k ; see Figure 1. The set G is the graph of a function f, which is Katsuura s function. Katsuura showed that the sequence of functions {f n } converges uniformly to f and that f is continuous but nowhere differentiable. Katsuura s function is an example of self-affine dust and is closely related to the class of Kiesswetter s curves; see, for example, [3], p. 200ff. Chuang and Lewis [2] studied the increments of Katsuura s function and showed that if x is chosen uniformly from the interval [0, 1), then ln f(x + h k ) f(x), suitably normalized, converges in measure to a standard normal random variable as h k 0 + along either h k = 1/3 k or h k = 2

2/3 k, k +. In part this result was anticipated in the literature, for probabilistic properties of continuous nowhere differentiable functions had already been investigated by Kono [8] and Gamkrelidze [5] for Takagi s function and by Gamkrelidze [4] for Weierstrass function. There are two main themes in the present paper, both of which are motivated by the investigation Chuang and Lewis. The chief shortcoming in the result Chuang and Lewis is the limitation on the approach of h k to 0 along the special subsequences. The underlying issue is this: given h > 0 and x chosen uniformly from [0, 1), is the random variable ln f(x + h) f(x) proper? Stated another way, does the set {x [0, 1 h) : f(x + h) f(x) = 0} have Lebesgue measure 0? In Section 4 we answer this question in the affirmative provided that h > 0 is a triadic rational number, that is, h = j/3 k for some positive integers j and k; see Theorem 4.1. 1 A crucial step in the proof of this result is a series representation of Katsuura s function which we develop in Section 3; see Lemma 3.1. The second main theme of this paper is focused on quantifying the continuity of f. In Theorem 5.1 of Section 5 we give an explicit exponential rate for the uniform modulus of continuity of f and in Theorem 6.1 of Section 6 we give, among other things, an explicit exponential rate for the local modulus of continuity of f. We show that f has the same local behavior at almost all of the points in [0, 1] and that this local behavior is quite different from the global or uniform behavior of f. In this way Katsuura s function acts very much like the path of a Brownian motion. The uniform behavior of a Brownian path is given by Lévy s modulus of continuity while local behavior is given by the law of the iterated logarithm; see, for example, Theorems 9.23 and 9.25 of [6]. 2 Preliminary definitions and results For k 0, let D k = {j/3 k : j Z} and let D = k 1 D k, the so-called triadic rational numbers. Throughout let t [0, 1) and let t =.t 1 t 2 t 3... be the unique ternary expansion of t. 2 1 It is still open as to whether or not the set in question has measure 0 for any h > 0. 2 Unique in the sense that t.t 1 t 2... t k < 3 k. In this way we eliminate ternary expansions ending in repeating 2 s. 3

Let St = 3t (mod 1). Note that S is simply the shift operator on the ternary expansion of t, that is, S(.t 1 t 2 t 3 ) =.t 2 t 3 We will let S k denote the k-fold self-composition of S. For k 1, let T k be the truncation operator T k t = 3 k 3 k t. Effectively T k chops off all of the digits in the ternary expansion of a number after the kth place; thus, T k (.t 1 t 2... t k t k+1... ) =.t 1 t 2... t k 000... Finally let σ 0 (t) = 0 and, for k 1, let σ k (t) = σ k (.t 1 t 2 t 3... ) = #{i : t i = 1, 1 i k}. Thus σ k (t) merely counts the number of times 1 appears in the first k terms of the ternary expansion of t. Our next result is well known, but we include it for completeness. 2.1 Theorem. For each k 1, σ k : [0, 1) R is a binomial random variable with parameters k and 1/3 with respect to Lebesgue measure. Proof. Our proof is a minor modification of the analogous result for dyadic expansions; see, for example, pages 3 through 5 of Billingsley [1]. Let m denote Lebesgue measure. Let u 1, u 2,..., u k be elements from {0, 1, 2}. Since {x [0, 1) : T k x =.u 1 u 2... u k } = [.u 1 u 2... u k,.u 1 u 2... u k + 1/3 k ), we may conclude that m{x [0, 1) : T k x =.u 1 u 2... u k } = 1 3 k. Since there are ( k i) 2 k i arrangements of u 1, u 2,..., u k containing exactly k 1 s, it follows that ( ) k m{x [0, 1) : σ k (x) = i} = 2 k i 1 ( ) k i 3 = (1/3) i (2/3) k i, k i as was to be shown. 4

For t [0, 1), let p k (t) = (2/3) k σ k(t) ( 1/3) σ k(t) = 2k ( 2) σ k(t) 3 k. (1) 2.1 Lemma. Let k 1. If α and β are consecutive elements of D k [0, 1), then (1) σ k (β) = σ k (α) ± 1 and (2) p k (β) = 2 ±1 p k (α). Proof. We will prove (1) by induction on k. The claim is certainly true if k = 1; the elements of D 1 [0, 1) are.0,.1, and.2, and the corresponding values of σ 1 are 0, 1, and 0. Let us suppose that the result is true for some k 1 and let α =.α 1... α k and β =.β 1... β k be consecutive elements of D k [0, 1) with α < β; thus, we may assume that σ k (β) = σ k (α) ± 1. (2) Then.α 1... α k 0,.α 1... α k 1,.α 1... α k 2,.β 1... β k 0 will be consecutive elements in D k+1 [0, 1), and the corresponding values of σ k+1 for these numbers will be σ k (α), σ k (α) + 1, σ k (α), and σ k (β) = σ k (α) ± 1, by (2). By inspection we find that the claim is true for these consecutive elements of D k+1 [0, 1) as well. The proof of (2) follows trivially from (1) and the definition of p k. We will give an alternate description of the sequence of functions {f k }. Let f 0 (x) = x be the identity function. Thereafter let 2 f 3 k 1(St) 3t = 0 f k (t) = 1 3 f k 1(St) + 2 3t = 1 (3) 3 2 f 3 k 1(St) + 1 3t = 2 3 We can summarize this in the compact formula: f k (t) = p 1 (t)f k 1 (St) + f 1 (T t). (4) Formula (4) can be easily extended by induction. 5

2.2 Theorem. For each k 1 for all t [0, 1) and for each 1 j k. f k (t) = p j (t)f k j (S j t) + f j (T j t). Proof. The statement is true in the case k = 1 and j = 1, by the very definition of f 1. Now let us assume that the claim is true up to index k 1 and let us consider the validity of this claim for index k. Note that equation (4) establishes the base case, j = 1. Now let us assume that this result is true up to an index 1 j < k. Then we find that f k (t) = p j (t)f k j (S j t) + f j (T j t) = p j (t) { p 1 (S j t)f k j 1 (S j+1 t) + f 1 (T S j t) } + f j (T j t) (by eq. (4)) = p j (t)p 1 (S j t)f k (j+1) (S j+1 t) + p j (t)f 1 (T S j t) + f j (T j t) Observe that p j (t)p 1 (S j t) = p j+1 (t). By our induction hypothesis, f j+1 (t) = p j (t)f 1 (S j t) + f j (T j t); thus, upon substituting T j+1 t for t in the above, we obtain f j+1 (T j+1 t) = p j (T j+1 t)f 1 (S j T j+1 t) + f j (T j T j+1 t). However, p j (T j+1 t) = p j (t), S j T j+1 t = T S j t, and T j T j+1 t = T j t. Consequently, p j (t)f 1 (T S j t) + f j (T j t) = f j+1 (T j+1 t). Summarizing our findings, we have as was to be shown. 2.3 Theorem. For each j 1, f k (t) = p j+1 (t)f k (j+1) (S j+1 t) + f j+1 (T j+1 t), f(t) = p j (t)f(s j t) + f(t j t). (5) Proof. Recall that Katsuura s function is the uniform limit of the sequence {f k } on the unit interval. Thus by taking limits as k tends to infinity in the formula of Theorem 2.2, we obtain f(t) = p j (t)f(s j t) + f j (T j t). (6) 6

We are left to show that f j (T j t) = f(t j t). Notice that if u D j [0, 1), then T j u = u, S j u = 0, and equation (6) becomes f(u) = f j (u). In other words, f agrees with f j on D j [0, 1). 3 In particular, since T j t D j [0, 1), f(t j t) = f j (T j t), which finishes our proof. We finish this section with two simple consequences of Theorem 2.3. 2.1 Corollary. Let k 1 and let α, β be consecutive elements of D k with α < β. Then f(β) f(α) = p k (α). Proof. For x (α, β), T k x = α and, by Theorem 2.3, f(x) = p k (α)f(s k x) + f(α) As x β, S k x 1 and, since f is continuous, this implies as was to be shown. f(β) = p k (α)f(1) + f(α) = p k (α) + f(α), 2.2 Corollary. Let k 1 and let α, β be consecutive elements of D k with α < β. If α x β, then f(x) is between f(α) and f(β). Proof. The claim is trivial if x = α or x = β; thus, we may assume that α < x < β. In this case, note that T k x = α and p k (x) = p k (α); let u = S k x. Then, by Theorem 2.3, f(x) = p k (α)f(u) + f(α). Recall that 0 f(u) 1 and, by Corollary 2.1, f(β) f(α) = p k (α). Thus if p k (α) > 0, then If p k (α) < 0, then f(α) f(x) f(α) + p k (a) = f(β). f(β) = f(α) + p k (α) f(x) f(α). In either case, the claim has been established. 3 This assertion is quite clear from Katsuura s geometric definition, but it is not difficult to see on purely analytic grounds as well. 7

3 A representation formula In this section we will present a series representation of the Katsuura function. 3.1 Lemma. For t [0, 1), f(t) = p k (t)f(.t k+1 ) (7) k=0 Note please that f(.t k+1 ) will be 0, 2/3 or 1/3 depending upon whether t k+1 = 0, 1 or 2 respectively. Proof. Let t =.t 1 t 2 t 3 [0, 1), and recall Since f(t) = lim k f(t k t), we have T k t =.t 1 t 2... t k 00... f(t) = lim f(t 1 t) + ( f(t 2 t) f(t 1 t) ) + + ( f(t k t) f(t k 1 t) ) k ( = f(t 1 t) + f(tk+1 t) f(t k t) ) k=1 However, by Theorem 2.3 we see that f(t k+1 t) f(t k t) = p k (T k+1 t)f(s k T k+1 t) = p k (t)f(.t k+1 ). Recalling that p 0 (t) = 1 for all t, we have f(t) = p k (t)f(.t k+1 ), k=0 as was to be shown. By Lemma 3.1, we may write f(t) = k=0 ( ) k 2 H k (t), 3 8

0.6 0.4 0.2 0.6 0.4 0.2-0.2 0.2 0.4 0.6 0.8 1-0.2 0.2 0.4 0.6 0.8 1 Figure 3: The graphs of H 2 and H 3 respectively. where H k (t) = ( 1 ) σk (t) f(.t k+1 ). 2 The graphs of H 2 and H 3 are given in Figure 3. Observe that as k increases, the functions H k (t) increase in frequency. Thus we have a representation of Katsuura s function as a sum of terms decreasing in amplitude but increasing in frequency as k increases. In this sense, our representation bears some resemblance to the example of Weierstrass. 4 Concerning the increments Let m denote Lebesgue measure. Here is the main result of this section. 4.1 Theorem. If h (0, 1) is a triadic rational number, then m{t [0, 1 h) : f(t + h) f(t) = 0} = 0. We begin with a lemma that makes direct use of our representation formula (7). 4.1 Lemma. Let α, t D k [0, 1), k 1. If p k (α) = p k (t), then f(α) f(t). Proof. Since α, t D k [0, 1) for some k 1, we have, by Lemma 3.1, k 1 f(t) = p j (t)f(.t j+1 ) j=0 k 1 f(α) = p j (α)f(.α j+1 ) j=0 9

and therefore k 1 ( f(t) f(α) = pj (t)f(.t j+1 ) p j (α)f(.α j+1 ) ). j=0 Let ν = max{i : α i t i }. The condition p k (α) = p k (t) is equivalent to the condition that α and t have the same number of 1 s in their ternary expansions. Since the ternary digits of α and t agree after index ν, it follows that p j (α)f(.α j+1 ) = p j (t)f(.t j+1 ) for j ν, and we may conclude that ν 1 ( f(t) f(α) = pj (t)f(.t j+1 ) p j (α)f(.α j+1 ) ). j=0 Recalling the definition of p k, we may write 3 ν( f(t) f(α) ) ν 1 = 3 ν 1 j 2 j( ( 2) σj(t) 3f(.t j+1 ) ( 2) σj(α) 3f(.α j+1 ) ) j=0 Observe that every term save the last in the sum on the right-hand side is a multiple of 3; thus, 3 ν( f(t) f(α) ) = 2 ν 1( ( 2) σ ν 1(t) 3f(.t ν ) ( 2) σ ν 1(α) 3f(.α ν ) ) (mod 3) Since 2 = 1 (mod 3) and 2 = 1 (mod 3), we may simply write 3 ν( f(t) f(α) ) = ( 1) ν 1( 3f(.t ν ) 3f(.α ν ) ) (mod 3) By definition, t ν α ν, and an elementary listing of all of the cases shows that 3f(.t ν ) 3f(.α ν ) ) 0 (mod 3) which shows that f(t) f(α), as was to be shown. We are now prepared to prove Theorem 4.1. 10

Proof of Theorem 4.1. Let h (0, 1) be a triadic rational and let t [0, 1 h). Let us assume that h =.h 1 h 2... h k 000... for some k 1 and let t = t 1 t 2... t k t k+1.... Then According to Theorem 2.3, we have Thus where t + h =.α 1 α 2... α k t k+1... f(t + h) = p k (.α 1 α 2... α k )f(s k t) + f(.α 1 α 2... α k ) f(t) = p k (.t 1 t 2... t k )f(s k t) + f(t 1 t 2... t k ) f(t + h) f(t) = pf(s k t) + f, p = p k (.α 1 α 2... α k ) p k (.t 1 t 2... t k ) f = f(.α 1 α 2... α k ) f(.t 1 t 2... t k ) If we let E denote the set of triadic rationals.t 1 t 2... t k such that t + h < 1, then {t [0, 1 h) : f(t+h) f(t) = 0} = {u [0, 1) : pf(u)+ f = 0}.t 1 t 2...t k E Since there are only finitely many elements in E, it is enough to show that m{u [0, 1) : pf(u) + f = 0} = 0 for each.t 1 t 2... t k E. There are two cases to consider. (1) If f 0, then we must consider the equation pf(u) = f If p = 0, then there are no solutions to this equation, and the set in question has measure 0. If p 0, then we seek the measure of the level set {u [0, 1) : f(u) = f/ p} As was shown in Chuang and Lewis [2], this level set has measure 0. (2) If f = 0, then we know from Theorem 4.1 that p 0 and thus we seek the measure of the level set {u [0, 1) : f(u) = 0}, which has only the trivial solution hence measure 0. This completes our proof. 11

5 The uniform modulus of continuity It is evident that Katsuura s function f fluctuates throughout the interval [0, 1]. This fluctuation can be quantified: for 0 < h < 1, the function ω(h) = sup s,t [0,1] s t h f(t) f(s), called the uniform modulus of continuity of f, is a measure of the oscillation of f throughout the interval [0, 1]. Let Γ = log 2(3/2) log 2 (3) = 1 log 3 (2) = 0.36907... (8) 5.1 Theorem. If h (0, 1), then 2 3 hγ ω(h) 3 2 hγ. In particular, log lim 2 ω(h) 1 h 0 + log 2 (h 1 ) = Γ Proof. The proof is composed of upper and lower bound arguments. The lower bound argument is the easier of the two, and we will begin there. Let 1/3 k h < 1/3 k 1, k 1. Since h ω(h) is increasing in h, ω(h) ω(1/3 k ) f(1/3 k ) f(0) = f(1/3 k ) = (2/3) k > 2 3 hγ, which is the lower bound. In the argument for the upper bound we will make use of the observation that f has an odd symmetry about the point (1/2, 1/2). This may be stated as f(1 y) + f(y) = 1, for all y [0, 1] This symmetry is exhibited on smaller scales throughout the interval [0, 1]. Thus suppose that x j and x j+1 are consecutive elements of D k. Then for y [x j, x j+1 ] we have f(x j+1 y) + f(x j + y) = f(x j+1 ) + f(x j ). (9) Let s, t D k [0, 1) for some k 1 with s < t and let h = t s = j/3 k. Let us assume that 3 l j < 3 l+1 and therefore 3 l k h < 3 l+1 k. This implies that h =.00... 0h k l h k l+1... h k, h k l 0, 12

Thus f(h) = (2/3) k l 1 f(.h k l h k l+1... h k ) Since f is bounded by 1, we may conclude that f(h) (2/3) k l 1 = (2/3) k l 3 2 = 3 2 hγ. (10) This is our fundamental starting point. Let us consider various cases for the relationship between s and t. (1) Suppose that 0 s < 1/3 and 1/3 t < 2/3. Then f(t) f(s) = (f(t) f(1/3)) + (f(1/3) f(s)) = (f(1/3) f(t)) + (f(1/3) f(s)). In this case t and 1/3 =.1 share the same first ternary digit; thus, 0 (f(1/3) f(t)) = 1/3(f(0) f(st)) = 1 3 f(st). But St = 3 t 1/3 3h and therefore Since 3 γ = 3/2, it follows that 0 (f(1/3) f(t)) 1 3 3 2 3h Γ 0 (f(1/3) f(t)) 3 2 hγ. Likewise, by our symmetry formula (9), 0 f(1/3) f(s) = f(1/3 s) 3 2 1/3 s Γ 3 2 hγ. In summary, f(t) f(s) 3 2 t s Γ for s [0, 1/3) D k and t [1/3, 2/3) D k. (2) If s [1/3, 2/3) D k and t [2/3, 1) D k, then, arguing as above, we can show that f(t) f(s) 3 t s Γ 2 in this case as well. 13

(3) Suppose that s [0, 1/3) D k and t [2/3, 1) D k. Then f(t) f(s) 1 = 3 2 2 3 = 3 ( ) Γ 1 3 2 3 2 hγ. (4) Finally let us suppose that s and t are in one of the subintervals: [0, 1/3) D k, [1/3, 2/3) D k, or [2/3, 1) D k. In this case the ternary expansions of s and t share at least the first digit. Let us suppose that s and t share the same first p digits, p 1. It follows that S p t and S p s must conform to one of our previous cases (1)-(3). Since S p t S p s = 3 p t s = 3 p h, f(t) f(s) = (2/3) p f(s p t) f(s p s) 3 2 (2/3)p (3 p h) Γ = 3 2 hγ. Finally given s, t [0, 1) we note that T k t and T k s are in D k [0, 1); hence, f(t) f(s) f(t) f(t k t) + f(t k t) f(t k s) + f(t k s) f(s) f(t) f(t k t) + 3 2 T kt T k s Γ + f(t k s) f(s) By letting k increase without bound, we may conclude that f(t) f(s) 3 t s Γ 2 This shows that ω(h) 3 2 hγ, which concludes the argument for the upper bound. 6 The local modulus of continuity In the previous section we studied the uniform continuity of f on [0, 1]; in this section we will study the continuity of f at a point. To this end, for x [0, 1) and h [0, 1/2), let ω(x, h) = sup f(t) f(s) s,t [x h,x+h] [0,1] This is the modulus of continuity of f at x. We will present three results concerning the behavior of the local modulus of continuity as h 0 +. 14

As we shall see, the typical value of ω(x, h) is of smaller order than the corresponding value of ω(h). In other words, it is the contributions of the local moduli from an exceptional set of points which influences the uniform modulus. Let γ = Γ + 1 3 log 3(2) = 1 2 3 log 3(2) = 0.57938... (11) Our results on the local modulus of continuity of f are consequences of our next theorem. 6.1 Theorem. There exist constants C 1 and C 2 such that ( ) ( h γ C 1 log 2 σ k (x) k ) C 2 ω(x, h) 3 for all x [0, 1), where k = k(h) is the smallest positive integer such that 2/3 k h < 2/3 k 1. This theorem demonstrates that ω(x, h) is closely related to σ k (x); consequently, results about ω(x, h) can be lifted from results about σ k (x). In Theorem 2.1 it was shown that if x is chosen uniformly from [0, 1), then σ k (x) has a binomial distribution with parameters k and 1/3. The following three results (the strong law of large numbers, the central limit theorem, and the law of the iterated logarithm) come from this observation: (1) For almost all x [0, 1), σ k (x) lim k k = 1 3. (2) For any a, b R, a < b, { m x [0, 1) : a σ k(x) k/3 (2/9)k } b 1 b e u2 /2 du. 2π a (3) For almost all x [0, 1), lim inf k σ k (x) k/3 (2/9)k ln ln(k) = 1 and lim sup k σ k (x) k/3 (2/9)k ln ln(k) = 1. 15

The relationship between k and h stated in Theorem 6.1 implies that D 1 k log 3 (2) log 2 (h 1 ) D 2. (12) Thus we can restate items (1), (2), and (3) above in the following form: (1) For almost all x [0, 1), (2) Let log lim 2 ω(x, h) 1 h 0 + log 2 (h 1 ) = γ. This result should be compared with that of Theorem 5.1. ϕ(h) = For any a, b R, a < b, as h 0 +, { m x [0, 1) : 2 9 log 2(h 1 ) log 3 (2) ( ) } 1 h γ ϕ(h) log 2 [a, b] ω(x, h) b a e u2 /2 du. Thus, for example, as h 0 +, 68% of the points x in the interval [0, 1) satisfy (3) Let log 2 (h γ ) ϕ(h) log 2 ω(x, h) 1 log 2 (h γ ) + ϕ(h). ψ(h) = Then, for almost all x in [0, 1), 2 9 log 3(2) log 2 (1/h) ln ln log 2 (1/h). lim inf h 0 + log 2 ω(x, h) 1 log 2 h γ ψ(h) = 1 and lim sup h 0 + log 2 ω(x, h) 1 log 2 h γ ψ(h) In particular, for any ε > 0, eventually = 1. log 2 h γ (1 + ε)ψ(h) log 2 ω(x, h) 1 log 2 h γ + (1 + ε)ψ(h) 16

while infinitely often and infinitely often log 2 ω(x, h) 1 log 2 h γ + (1 ε)ψ(h) log 2 ω(x, h) 1 log 2 h γ (1 ε)ψ(h) We turn now to the proof of Theorem 6.1, and we begin with a lemma on bounding the increments of f. 6.1 Lemma. Let a, b D k [0, 1) with a < b and suppose that b a = l/3 k ; let x [a, b]. If s, t [a, b], then f(t) f(s) l2 l p k (x). Proof. We will assume that s < t. Let a = α 0 < α 1 < < α l 1 < α l = b be the consecutive elements of D k between a and b. First we will show that l 1 f(t) f(s) p k (α i ). (13) Let us suppose that s, t [α j, α j+1 ] for some j {0, 1,..., l 1}. Then, by Corollary 2.2, l 1 f(t) f(s) f(α j+1 ) f(α j ) = p k (α j ) p k (α i ), which verifies (13) in this case. Otherwise it must be that s [α j, α j+1 ) and t (α m, α m+1 ] for some indices j and m {0, 1,..., l 1}, with j < m. By telescoping and Corollary 2.2, we may write f(t) f(s) f(t) f(α m ) + f(α m ) f(α m 1 ) + + f(α j+1 ) f(s) m m f(α i+1 ) f(α i ) = p k (α i ) i=j l 1 p k (α i ), i=0 i=j 17 i=0 i=0

which, once again, verifies (13). To finish the proof, observe that x [a, b] implies that p k (x) = p k (α j ) for some j {0, 1,..., l}, and, by Lemma 2.1, for each i {0, 1,..., l 1}; thus, as was to be shown. p k (α i ) 2 l p k (x) l 1 f(t) f(s) p k (α i ) l2 l p k (x), i=0 Proof of Theorem 6.1. Fix x [0, 1]. Let α and β be elements of D k [0, 1] be chosen so that [α, β] [x h, x + h] [0, 1) with β α minimized. Then α > x h 1 3 k and β < x + h + 1 3 k and β α < 2h + 2/3 k < 14/3 k, where we have the assumption that h < 2/3 k 1 to obtain the last inequality. It follows that β α = l/3 k, with l 13. By Lemma 6.1, ω(x, h) sup f(t) f(s) 13 2 13 p k (x), s,t [α,β] which gives us an upper bound on the modulus at x. To produce a corresponding lower bound, let α =.x 1 x 2... x k and let β = α + 1/3 k. Then α, β D k [0, 1] and α, β [x h, x + h] [0, 1]. Thus, by Corollary 2.1, In summary ω(x, h) f(β) f(α) = p k (α) = p k (x). p k (x) ω(x, h) 13 2 13 p k (x). (14) for each x. By combining (1) and (12), we may assert that there exist constants E 1 and E 2 such that { E 1 log 2 p k (x) + σ k (x) k } + log 3 2 (h γ ) E 2 This chain of inequalities in conjunction with (14) completes our proof. 18

References [1] Patrick Billingsley. Probability and measure. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, second edition, 1986. [2] Luke Chuang and Thomas M. Lewis. On the increments of katsuura s continuous nowhere differentiable function. Available at http://math.furman.edu/ tlewis/selfpub/, 2005. [3] Gerald A. Edgar. Measure Topology and Fractal Geometry. Springer, New York Berlin Heidelberg, 1990. [4] N. G. Gamkrelidze. The modulus of continuity of the Weierstrass function. Mat. Zametki, 36(1):35 38, 1984. [5] N. G. Gamkrelidze. On a probabilistic properties of Takagi s function. J. Math. Kyoto Univ., 30(2):227 229, 1990. [6] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991. [7] Hidefumi Katsuura. Continuous nowhere-differentiable functions an application of contraction mappings. Amer. Math. Monthly, 98(5):411 416, 1991. [8] N. Kôno. On generalized Takagi functions. Acta Math. Hungar., 49(3-4):315 324, 1987. [9] Johan Thim. Continuous nowhere differentiable functions. Master s thesis, Luleå University of Technology, December 2003. Available at http://epubl.ltu.se/1402-1617/2003/320/indexen.html. 19