Lecture Angular Momentum

Similar documents
angular momentum Angular Momentum in Halos & Galaxies how do galaxies get their spin? the spin parameter

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

MECHANICS OF MATERIALS Poisson s Ratio


Angular Momentum Problems in Disk Formation

Why do globular clusters have more than one main sequence? Ref: Gratton et al. 2012, A&ARv, 20, 50

Origin of Bi-modality

Q & Particle-Gas Multiphase Flow. Particle-Gas Interaction. Particle-Particle Interaction. Two-way coupling fluid particle. Mass. Momentum.

PHYS PRACTICE EXAM 2

Orthotropic Materials

A solution of the cusp problem in virialized DM halos in standard cosmology

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

General momentum equation

CS 188: Artificial Intelligence Fall Probabilistic Models

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants

Reinforcement learning

The Global Trade and Environment Model: GTEM

Ferent equation of the Universe

The Production of Polarization

Low-complexity Algorithms for MIMO Multiplexing Systems

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster

Stellar Structure and Evolution

Galaxy Disks: rotation and epicyclic motion

SPHERICAL WINDS SPHERICAL ACCRETION

POISSON S EQUATION 2 V 0

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

The sudden release of a large amount of energy E into a background fluid of density

Measures the linear dependence or the correlation between r t and r t-p. (summarizes serial dependence)

AST1100 Lecture Notes

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Convective Heat Transfer (6) Forced Convection (8) Martin Andersson

arxiv: v2 [astro-ph.he] 21 Jan 2014

ASTR 610 Theory of Galaxy Formation Lecture 18: Disk Galaxies

Central Force Motion

Experiment 09: Angular momentum

Probing Galaxy Halos with Tidal Interactions. Kyoto University Astronomy Department June 27, 2013

EN221 - Fall HW # 7 Solutions

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

Lecture 7. Galaxy Formation

Support Vector Machines

Lecture 7. Galaxy Formation After decoupling, overdense regions collapse IF. Caveats. The Dark Ages ( 1100 < z < 20 ) Redshift of Galaxy Formation

PHYS GENERAL RELATIVITY AND COSMOLOGY PROBLEM SET 7 - SOLUTIONS

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

Fluid Flow and Heat Transfer Characteristics across an Internally Heated Finned Duct

Today in Astronomy 142: the Milky Way s disk

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

The Wrong EHT Black Holes image and money; the Ferent image. Einstein and all the scientists did not understand Gravitation

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

Lecture 8 - Gauss s Law

Astro 250: Solutions to Problem Set 1. by Eugene Chiang

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence

Central Force Problem. Central Force Motion. Two Body Problem: Center of Mass Coordinates. Reduction of Two Body Problem 8.01 W14D1. + m 2. m 2.

Physics 181. Assignment 4

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

Computer Propagation Analysis Tools

Quantum Mechanics. Wave Function, Probability Density, Propagators, Operator, Eigen Value Equation, Expectation Value, Wave Packet

SUMMARY GENERAL STRATEGY IMPORTANT CONCEPTS APPLICATIONS. Problem Solving. Motion Diagrams. Pictorial Representation

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

Convective Heat Transfer (6) Forced Convection (8) Martin Andersson

Mechanics and Special Relativity (MAPH10030) Assignment 3

Lecture 22 Electromagnetic Waves

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

Growth of structure in an expanding universe The Jeans length Dark matter Large scale structure simulations. Large scale structure data

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic.

Exercise 4: Adimensional form and Rankine vortex. Example 1: adimensional form of governing equations

1 Fundamental Solutions to the Wave Equation

Lecture 13. Rotational motion Moment of inertia

Rydberg-Rydberg Interactions

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

IAU Symposium #254, Copenhagen June 2008 Simulations of disk galaxy formation in their cosmological context

Analysis of spatial correlations in marked point processes

Pressure Vessels Thin and Thick-Walled Stress Analysis

KINEMATICS OF RIGID BODIES

Lecture 5 Emission and Low-NOx Combustors

PHYS 1401 General Physics I Test 3 Review Questions

ω = θ θ o = θ θ = s r v = rω

The Cosmological Angular Momentum Problem of Low-Mass. Disk Galaxies

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown

ASTR415: Problem Set #6

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

1 Spherical multipole moments

In the previous section we considered problems where the

Disk Formation and the Angular Momentum Problem. Presented by: Michael Solway

Physics 235 Chapter 5. Chapter 5 Gravitation

Chapter 5 Page 5.1 CHAPTER 5. r Force times distance has units of energy. Therefore, fxr=u, or f / is dimensionless.

A path-integral approach to CMB

AB for hydrogen in steel is What is the molar flux of the hydrogen through the steel? Δx Wall. s kmole

arxiv: v1 [cond-mat.soft] 15 Nov 2011

B. Spherical Wave Propagation

7 Wave Equation in Higher Dimensions

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t.

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

Transcription:

Lecue Angula Momenum Tidal-Toue Theoy Halo spin Angula-momenum disibuion wihin halos Gas Condensaion and Disk Fomaion The AM Poblems Thin disk, hick disk, bulge

Disk Size Spin paamee Consevaion of specific angula momenum λ ~ J / M RV cons. = J / M ~ λ Rviial V ~ R disk V R R disk viial ~ λ J/M R V

Tidal-Toue Theoy TTT Peebles 1976 Whie 1984

N-body simulaion of Halo Fomaion

N-body simulaion of Halo Fomaion

Oigin of Angula Momenum Tidal Toue Theoy TTT: Peebles 1976 Whie 1984 Γ poo-galaxy peube Resul: J i ε ijk T jl I lk Tidal: T ij = i 2 φ j Ineia: I ij 3 0 Γ = a d ρ 0 i j 3

Tidal-Toue Theoy Halo Poo-halo: a Lagangian pach

Tidal-Toue Theoy d V v R L cm cm = Euleian 3 ] [ ] [, γ ρ angula momenum in Euleian pach 1 / / ax v a x ρ ρ δ & x x d X x x a L cm 3 3 ] ][, [1 & + = γ δ ρ comoving coodinaes cons. in m.d.,, S x x = d x d J x acobian 3 3 1 1, ], [ 1 = + = + δ δ Γ + = Lagangian 3 3 0 0, ], [ d S S S a L & ρ displacemen fom Lagangian o Euleian x lamina flow aveage ove in _ S S D a G D S & // ] /[4,, 2 gav = = ρ π ϕ φ φ d a D a L Γ = 3 3 0 0 2 ϕ ρ & Zel dovich appoximaion j i j i i i + + = = 0 2 0 2 1 0 φ φ φ φ 2 nd -ode Taylo expansion of poenial abou cm =0 D D a 2 3/ 2 & in a fla univese in EdS 0 2 = = cm l j jl D φ lk jl ijk i I D D a L ε 2 & = ε ijk d a I k l lk 3 3 0 ρ 0 Γ Defomaion enso Ineia enso anisymmeic enso

L i = a D ε 2 & ijk T jl Tidal-Toue Theoy I lk D jl 2 φ j l = cm = 0 I lk 3 ρ 0 a0 l Γ k d 3 ε ijk Defomaion enso Ineia enso anisymmeic Tidal enso = Shea enso T D D δ / 3 Quadupola Ineia I ij I ii δij / 3 ij ij ii ij Only he ace-less pa conibues L by gaviaional coupling of Quadupole momen of _ wih Tidal field fom neighboing flucuaions Ṫ and I mus be misaligned. Γ L ill ~unaound peube

TTT vs Simulaions Pociani, Dekel & Hoffman 2002 Alignmen of T and I: Spin oiginaes fom he esidual misalignmen. Small spin!

TTT vs. Simulaions: Ampliude Gowh Rae Pociani, Dekel & Hoffman 02 Ampliude Diecion

TTT vs Simulaions: Scae Pociani, Dekel & Hoffman 2002

TTT pedics he spin ampliude o wihin a faco of ~2, bu i is no a vey eliable pedico of spin diecion.

Alignmen of I and T: Poohalos and Filamens

Alignmen of I and T: Poohalos and Filamens

Sages in Halo Fomaion

Spin axis and Lage-Scale Sucue TTT: J x = 2 φ y z I yy I zz J J y z = = 2 φ x z 2 φ x y I I xx xx I I zz yy I > I > xx yy I zz The spin diecion is coelaed wih he inemediae pincipal axis of he Iij enso a unaound. In a lage-scale pancake: he spin axis should end o lie in he plane.

Spin axis and Lage-Scale Sucue

Disk-Pancake Alignmen in he Local Supecluse

Halo Spin Paamee Fall & Efsahiou 1980 Banes & Efsahiou 1984 Seinmez e al. 1994- Bullock e al. 2001b

Halo Spin Paamee Peebles 76: dimensionless λ J E GM 1/ 2 5/ 2 Bullock e al. 2001 λ 3 4 J / M RV same fo isohemal sphee 3 1 GM E = M V 2 2 R 2 2 2 σ σ = = 2σ 2 TTT: J deemined a unaound J & 2 2 2 1/ 2 5/3 ~ a D φ0 MR0 ~ a M 2 3/ 2 a D & ~ ~ a δ ~ 2 D φ when δ ~ 1: 2 φ 0 ~ D 1 ~ a 1 3 comoving R 0 ~ M / ρ0 ~ M E 2 1 5/3 ~ M / R ~ a M Physical R 3 ~ ρ 1 M ~ a 3 M _ is consan, independen of a o M simulaions: _~0.05

Disibuion of Halo Spins <_> ~ 0.04 _ln_ ~ 0.5

Spin vs Mass, Concenaion, Hisoy _ disibuion is univesal _ coelaed wih a c, ani-coelaed wih C

Spin Jump in a Majo Mege Buke & D onghia 04 _ uie halos wih no ecen majo mege J ime

J Disibuion inside Halos Bullock e al. 2001b

Univesal Disibuion of J inside Halos µ j M < j = M vi µ > 1 j + j 0 j max j0 = J / M = µ 1 j b µ = 2VRλ' 0 Bullock e al. 2001b b µ µ ln1 µ 1 1 Two paamee family: spin paamee _ and shape paamee _ P -1 _-1 _

Disibuion of J wih adius: a powe-law pofile j~m s j /j max s s=1.3 æ0.3 M< /M v M vi

Disibuion of J in space Toy model: J by mino meges Tidal adius m l l = 2M 2 3 l dm d M α m[ l ] M Assume m and j ae deposied locally in a shell 2 d[ V ] dm 4π ρ j = m + V d d M, m l j M M l NFW halo j /j max j /j max s=1.3 æ0.3 M< /M v M< /M v

Whie & Rees 1978 Fomaion of Sella Disks and Spheoids inside DM Halos Fall & Efsahiou 1980 Mo, Mao & Whie

Galaxy Types: Disks and Spheoids The mophology of a galaxy is a ansien feaue dicaed by he mass acceion hisoy of is dak mae halo mos sas fom in disks; spheoids esul fom subseuen meges disks esul fom smooh gas acceion; oldes disk sas ae ofen used o dae he las majo mege even

Galaxy Fomaion in halos adiaive cooling cold ho mege spheoid disk acceion hhalos cold gas young sas old sas

Gas vesus Dak Mae Navao, Seinmez

Fla gaseous disk vs spheoidal DM halo

Disk/Bulge Fomaion gas only Navao, Seinmez

Disk Size Spin paamee Consevaion of specific angula momenum λ ~ J / M RV cons. = J / M ~ λ Rviial V ~ R disk V R R disk viial ~ λ J/M R V

Disk Pofile fom he Halo J Disibuion Assume he gas follows he halo j disibuion Assume consevaion of j duing infall fom halo o disk. In disk: lowe j a lowe M halo In disk: µ j < j = M vi µ > 1 j + j 0 M gas < j = f M < j j = V = [ GM ] M m halo 1/ 2 < j m disk j = fµ M v j j j + j d < 0 max Assume isohemal sphee No adiabaic conacion M j = V = m Σ = fµ M v + d < d = fµ M 2π v d d d + 2 max V vi d = max = 2λ' R b d v 1 / µ 1 µ

Disk Pofile: Shape Poblem Bullock e al. 2001b _ d [M d /R v2 ] _ d [M d /R v 2 ] /R vi /R vi

The Angula-Momenum Poblem Navao & Seinmez

The Spin Caasophe Navao & Seinmez e al. obsevaions simulaions j j

The spin caasophe obseved j disk Simulaed SPH Seinmez, Navao, e al.

Obseved j disibuion in dwafs disk halo BBS Low f bayons 0.03 Missing low j High λ bayons 0.07 Pj/j o j/j o van den Bosch, Buke & Swaes 2002

Ove-cooling spin caasophe Malle & Dekel 02 saellie + dynamical ficion idal sipping DM halo gas cooling Feedback can save he day

Obial-mege model: Add obial angula momenum in mege hisoy Mege hisoy Obi paamees Binney & Temaine and andom oienaion

Succes of obial-mege model model Malle, Dekel & Someville 2002 simulaions

Model success: j disibuion in halos simulaions model

Low/high-j fom mino/majo meges High-j fom majo meges simulaions J model Low-j fom mino meges

Supenova Feedback: V SN Dekel & Silk 86; Dekel & Woo 03 Enegy fed o he ISM duing he adiabaic phase: E SN νε M& ad M * ad ff M& M * ff 0.01 fo Λ T 1 a T ~ 10 5 K Enegy euied fo blowou: E M SN gas V 2 V 10 ci 100 km/s M ci 3 10 M o

Feedback in saellie halos V vi> V fb ho gas DM j b <j DM ho gas j b =j DM Vvi V fb V vi< V fb 2 blow ou j b >j DM /

Model vs Daa Malle & Dekel 02 BBS daa: 14 dwafs, van den Bosch, Buke & Swaes 02 bayon facion model dwafs bigh spin paamee BBS daa BBS daa model dwafs V vi =60 One fee paamee in model: V feedback 90 km s -1

J-disibuion wihin galaxies DM halo disk daa model BBS: van den Bosch, Buke & Swaes 2002

Summay: feedback effec on spin In big saellies meging o big galaxies heaing gas expansion R b ~R DM idal sipping ogehe λ ba ~ λ DM In small saellies meging o dwafs gas blowou f ba down blowou of low j gas λ ba > λ DM

Thin Disk and Thick Disk Navao & Seinmez

Dynamical Componens of a Simulaed galaxy

Dynamical componens of a simulaed galaxy non-oaing spheoid hick disk hin disk Obial Ciculaiy Abadi Abadi e e al al 03 03

Fomaion of Thick Disk Sella saellie meging wih disk: edge-on

Fomaion of Thick Disk Sella saellie meging wih disk: face-on