Modeling and Simulation of Ethyl Acetate Reactive Distillation Column Using Aspen Plus

Similar documents
International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March ISSN

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process

Analysis of processing systems involving reaction and distillation: the synthesis of ethyl acetate

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

Generalized Modeling and Simulation of Reactive Distillation: Esterification

Optimization of Batch Distillation Involving Hydrolysis System

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

A case study on separation of IPA-water mixture by extractive distillation using aspen plus

Effects of Feed Stage on the Product Composition of a Reactive Distillation Process: A Case Study of trans-2-pentene Metathesis

Thermodynamic Analysis and Hydrodynamic Behavior of a Reactive Dividing Wall Distillation Column 1. Introduction

Performance of esterification system in reaction-distillation column

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

METHYL ACETATE REACTIVE DISTILLATION PROCESS MODELING, SIMULATION AND OPTIMIZATION USING ASPEN PLUS

Energy and Energy Balances

Vapor-liquid equilibrium

Distillation is a method of separating mixtures based

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS

Reactors. Reaction Classifications

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

Steady State Multiplicity and Stability in a Reactive Flash

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Optimal Operation of Batch Reactive Distillation Process Involving Esterification Reaction System

Comparison of Conventional and Middle Vessel Batch Reactive Distillation Column: Application to Hydrolysis of Methyl Lactate to Lactic Acid

Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

ESTIMATING THE OPTIMUM OPERATING PARAMETERS OF OLEFIN METATHESIS REACTIVE DISTILLATION PROCESS

Novel Control Structures for Heterogeneous Reactive Distillation

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2

Control Study of Ethyl tert-butyl Ether Reactive Distillation

ECONOMIC ANALYSIS OF ANETHANOL-TO-HYDROCARBON PROCESSSET-UP THROUGH MODELLING AND SIMULATION USING ASPEN PLUS

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia

Modeling and Simulation of Distillation + Pervaporation Hybrid Unit: Study of IPA - Water Separation

IV Distillation Sequencing

Catalytic Reactive Distillation for the Esterification Process: Experimental and Simulation

Esterification of Acetic Acid with Butanol: Operation in a Packed Bed Reactive Distillation Column

Distillation. Senior Design CHE 396 Andreas Linninger. Innovative Solutions. Michael Redel Alycia Novoa Tanya Goldina Michelle Englert

Effect of Li-Br salt on azeotropic mixture of formic acid-water by extractive distillation

Pressure Swing Distillation with Aspen Plus V8.0

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients

Thermodynamics, Design, Simulation and Benchmarking of Biofuel Processes

Heterogeneous Azeotropic Distillation Operational Policies and Control

Dividing wall columns for heterogeneous azeotropic distillation

A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

Separation Trains Azeotropes. S,S&L Chapter 9.5 Terry A. Ring Chemical Engineering University of Utah

Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

Control of reactive distillation process for production of ethyl acetate

regressing the vapor-liquid equilibrium data in Mathuni et al. and Rodriguez et al., respectively. The phase equilibrium data of the other missing pai

Stoichiometric Reactor Module

Process Intensification for Ethyl Lactate Production Using Reactive Distillation

Level 4: General structure of separation system

Production of high-purity ethyl acetate using reactive distillation: Experimental and start-up procedure

Distillation Course MSO2015

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00

Simulations and Economic Analyses of Ethyl Acetate Productions by Conventional and Reactive Distillation Processes Using Aspen Plus

Rate-based design of integrated distillation sequences

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column

Simulation of Ethanol Dehydration Using Cyclohexane as an Entrainer

Isobaric Vapour-Liquid Equilibrium of Binary Mixture of 1, 2-Di-chloroethane with 1-Heptanol at Kpa

CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria. Dr. M. Subramanian

CHAPTER SIX THERMODYNAMICS Vapor-Liquid Equilibrium in a Binary System 6.2. Investigation of the Thermodynamic Properties of Pure Water

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

ENTRAINER-ENHANCED REACTIVE DISTILLATION

Process Control Exercise 2

Experimental evaluation of a modified fully thermally coupled distillation column

Reflections on the use of the McCabe and Thiele method

Process Classification

REACTIVE distillation is a separation process that combines

DISTILLATION. Keywords: Phase Equilibrium, Isothermal Flash, Adiabatic Flash, Batch Distillation

THERMODYNAMIC ANALYSIS OF MULTICOMPONENT DISTILLATION-REACTION PROCESSES FOR CONCEPTUAL PROCESS DESIGN

Innovative Design of Diphenyl Carbonate Process via One Reactive Distillation with a Feed-Splitting Arrangement

APPLICATION OF THE RELAXATION METHOD FOR SOLVING REACTING DISTILLATION PROBLEMS

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Thermodynamic and Stochiometric Principles in Materials Balance

IlE. Simulation of a Distillation Column on an IBM PC, Accounting for Real Behaviour of Electrolyte Solutions * c I

A New Batch Extractive Distillation Operational Policy for Methanol Recovery

For an incompressible β and k = 0, Equations (6.28) and (6.29) become:

Optimal Design of a Reactive Distillation Column

Triple Column Pressure-Swing Distillation for Ternary Mixture of Methyl Ethyl Ketone /Isopropanol /Ethanol

Design and control of an ethyl acetate process: coupled reactor/column configuration

Distillation. Presented by : Nabanita Deka

Separation of ternary heteroazeotropic mixtures in a closed multivessel batch distillation decanter hybrid

Modelling and Simulation of Fermentation Product Purification for Local Vinegar using Batch Distillation

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS

Chemical Equation and Stoichiometry

Dehydration of Aqueous Ethanol Mixtures by Extractive Distillation

Chemistry: The Central Science Twelfth Edition, AP* Edition 2012

Reminder: These notes are meant to supplement, not replace the laboratory manual. Fractional Distillation notes

MULTI-LOOP CONTROL STRUCTURE FOR DIVIDING-WALL DISTILLATION COLUMNS. Abstract. Introduction

Prepared for Presentation at the 2004 Annual Meeting, Austin, TX, Nov. 7-12

ChemSep Case Book: Handling Missing Components

INTEGRATION OF DESIGN AND CONTROL FOR ENERGY INTEGRATED DISTILLATION

Introduction to Chemical Engineering Computing, 2 nd edition, Bruce A. Finlayson, Wiley (2012)

Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION

Transcription:

nternational Journal Of Scientific & Engineering Research, Volume 3, ssue 8, August-2012 1 Modeling and Simulation of Ethyl Acetate Reactive Distillation Column Using Aspen Plus Sohail Rasool Lone & Syed Akhlaq Ahmad Abstract This work presents the modeling and simulation of ethyl acetate reactive distillation column using Aspen Plus TM simulation software. Reactive distillation is a process where simultaneous chemical reaction and vapour-liquid phase separation take place. This represents an exciting alternative to traditional liquid phase chemical reaction processing. n reactive distillation, separation of products from uonverted reactants allows for greater conversion, because product removal displaces equilibrium and forces the reaction towards completion. The combination of reaction and distillation helps in achieving products of higher purity and higher conversion of reactants as compared to old conventional processes. Both reaction and distillation acting simultaneously offers certain advantages that c an t be achieved by conventional processing. The Aspen Plus TM simulator was used and RADFRAC model was used in Aspen Plus TM which is meant for the reactive distillation simulation. Reactive distillation is also important from the economic point of view as it involves chemical reaction and distillation in the same unit and hee it is preffered over the old conventional processes which involve chemical reaction and distillation separately. ndex Terms Modeling, Simulation, Reactive Distillation, Aspen Plus. 1 NTRODUCTON REACTVE distillation involves simultaneous chemical reaction and distillation. The chemical reaction usually takes place in the liquid phase or at the surface of a solid catalyst in contact with the liquid phase. General application of reactive distillation is the separation of close boiling or azeotropic mixtures. A second application of reactive distillation involves taking into account undesirable reaction that may occur during distillation, but the most interesting application involves combining chemical reaction and separation by distillation in a single distillation unit. This technique offers a key opportunity for improving the structure of a process. t is a so-called hybrid process i.e.it merges two different unit operations in a single apparatus namely reaction and distillation. But the combination of distillation and reaction is possible only if the conditions of both unit operations can be combined. Reactive distillation can be used with a wide variety of chemistries iluding acetylation, aldol condensation, alkylation, amination, dehydration, esterification, etherification, hydrolysis, isomerization, oligomerization, transesterification. Reactive distillation, combination of chemical reaction and distillation in a single unit, has proven to be advantageous over conventional process systems consisting of separate reactor and distillation unit. This coept appears to have been first pronoued by Backhaus, who, starting in 1921, Syed Akhlaq Ahmad, PhD, is Associate Professor, Chemical Engineering Department, Aligarh Muslim University, Aligarh, email: sa.ahmad.ke@amu.ac.in Sohail Rasool Lone, is presently Pursuing M. Tech. in Chemical Engineering from Aligarh Muslim University, Aligarh, email: lonesohail92@gmail.com. obtained a series of patents for esterification reaction in a distillation column. This coept of continuous and simultaneous chemical reaction and distillation in a single vessel was also experimentally verified by Leyes and Othmer, for the esterification of acetic acid with an excess of n-butanol in the presee of sulphuric acid as catalyst to produce butyl acetate and water. Further, research both of an experimental and theoretical nature, was conducted during later years. The combination of reaction and distillation over a catalyst bed has been extensively investigated. The most typical examples are MTBE(methyl tert-butyl ether) and cumene production. Modeling of reactive distillation has received considerable attention over the last 15 years and several key contributions have appeared in the literature(doherty and Malone and the excellent overview of Noeres et al). Pilavachi et al. presented an extensive discussion of several important aspects that affect the accurate modeling of reactive distillation processes. Schenk et al. described in considerable details a hybrid-modeling environment in which a reactive distillation process can be simulated using a combination of equilibrium and mass transfer models, both in steady state and dynamic modes. 2 ADVANTAGES OF REACTVE DSTLLATON reased speed and improved efficiey. Lower costs,reduced equipment use, energy use and handling. Lesser wastes and fewer by-products. mproved product quality-reducing opportunity for degradation, because of less heat, heat duty can be http://www.iser.org

nternational Journal Of Scientific & Engineering Research, Volume 3, ssue 8, August-2012 2 reduced by utilizing the heat of reaction (if present) in situ. Recycle costs for excess reactant, which is necessary for a conventional reactor to prevent side reactions and chemical equilibrium limitation, can be reduced. Reaction conversions can be ireased by overcoming chemical equilibrium limitation through the removal of reaction products. Limitation of azeotropic mixture can be overcome by reaction, described by Terril et al. 3 VAROUS ASSUMPTONS USED Each stage is a perfectly mixed i.e. liquid composition at each stage is homogeneous and equal to the composition of liquid leaving the stage. The vapour and liquid leaving any stage are in physical equilibrium. Entrainment of liquid drops in vapour and occlusion of vapour bubbles in liquid are negligible. The heats of reaction are negligible. The reactions take place in the bulk liquid. Vapour molar holdup and vapour-phase chemical reactions are neglected. MODELNG The obective of this work was the modeling and simulation of ethyl acetate reactive distillation column in steady state operation. The configuration of each stage is shown in figure 1.The mass balae of component i in a stage is given by: nr m 1 1 k k, k 1 f ( R 1) n ( Z 1) n ( n n F v ) 0 (1.1) Where ( Z 1) n is the molar flow rate of component i that leaves stage i. as vapour, Zn i, the flow rate in the vapour side stream and n i, is the flow rate to the subsequent stage. ( R 1) n is the molar flow rate of component i that leaves the stage as liquid, Rn the flow rate in the liquid side stream and n is the flow rate to the subsequent stage. F is the molar flow rate of the feed stream to stage. n this equation, vik, is the stoichiometric coefficient of component i in the reaction k, k, the extent of reaction k in tage and nr is the number of independent chemical reactions. Assuming that the streams leaving a stage are in phase equilibrium and that each stream is modelled by an equation of state,we have: f ln( x ) ln( x ) 0 (1.2) eq Where x and are the mole fraction and fugasity coefficient of component i in stream of stage respectively.the energy balae equation is: f ( R 1) H ( Z 1) H ( H H H Q ) 0 h 1 1 F (1.3) Where H and H are the total enthalpy flows of streams and to the subsequent stages, Q is the heat load in each stage and H F is the enthalpy flow of the feed stream to stage.all enthalpy values are reffered to the pure elements at 298.15 K,1 bar. At the top and at the bottom, we have the condenser and the reboiler respectively.we need to add one more equation associated to reflux flow in the column: lv i 1 i 1 (1.) f ( Z 1) n E ( R 1) n 0 Variable E is specified for the condenser and the reboiler, and is calculated for the inner stages. Equation (1. ) is used for the total or partial condensers and reboilers, depending on the values specified for R, Z and E. The chemical equilibrium equation for each reaction k in stage is: i 1 k v 0 (1.5) At chemical and phase equilibrium, the chemical potential of a component is the same in the liquid and vapour phases. We arbitrarily chose to write the chemical equilibrium equation using the chemical potentials of phase : ( T, P ) RT ln( x P / P ) 0, 0 0 We use P 0 =1 bar and 0, ig 0 (1.6) P in bar. n equation (1.6), ( T, P ) is the molar Gibbs free energy of formation of pure component i at temperature T and pressure P 0 in the idea gas state. Combining equations (1.5) and (1.6),and the definitions of mole fractions,and dividing by RT,we obtain the chemical equilibrium equation as under: r 0, ig k, k 0 k 0 i 1 i 1 i 1 f [ v ( ( T, P ) / RT ) v ln( n P / P n )] 0 (`1.7) This form of the chemical equilibrium equation (Equation(1.7)) is particularly convenient for it s easy differentiation. Fig.1 Configuration of each stage http://www.iser.org

nternational Journal Of Scientific & Engineering Research, Volume 3, ssue 8, August-2012 3 5 ETHYL ACETATE PRODUCTON The esterification of acetic acid with ethanol towards ethyl acetate and water occurs according to the reaction. CH3COOH C2H5OH CH3COOC2H 5 H2O The model of the reaction rate use in this work is as under: r k1c 1C2 k2c3c (1.8) The rate constants k1 and k2 are given as under: k1.76 10 exp( 5977( J / gmol) / RT ) (1.9) k2 1.63 10 exp( 5977( J / gmol) / RT ) (1.10) 6 SMULATON Aspen Plus TM was used for simulating the above model.n the Aspen Plus TM,there is an inbuilt model known as RADFRAC which is meant for the simulation of the reactive distillation columns.n the example that has been mentioned above i.e. the esterification of acetic acid with ethanol towards ethyl acetate and water, the column has eight stages(reboiler, six adiabatic plates and condenser).the numbering of stages is done bottom upward and column pressure is taken as one atmosphere. All the stages are reactive stages. The feed rate is.3067 kmol/sec with a liquid distillate of 0.7083 kmol/sec. The feed is saturated liquid at feed tray pressure and the reflux ratio is 2.1 and boilup ratio is 0.595.The condenser is a total condenser and reboiler is a partial reboiler. The feed is feed to the third stage from the top and has the mole fraction compostion as: acetic acid x 1 0.2559,ethanol x 2 0.6159,ethyl acetate x 3 0.0539 and water x 0.073.Holdup volumes are 0.6 and 0. litres, respectively for reboiler and each of the stages 1-7.The Aspen Plus TM simulator was used in this work and using the above given specifications in the RADFRAC model which is meant for the simulation of reactive distillation columns. There are a number of thermodynamic property models in Aspen Plus TM which can be used for the estimation of various thermodynamic properties, but Wilson property model was in this work. The Wilson model is very much accurate for the present system, and hee it was used. The results that were obtained upon the simulation of the model are given in the form of graphs below. Fig 2 Temperature Profile in Ethyl Acetate Fig. 3 Acetic Acid liquid mole fraction in Ethyl Acetate http://www.iser.org Fig. Ethanol liquid mole fraction in Ethyl Acetate

nternational Journal Of Scientific & Engineering Research, Volume 3, ssue 8, August-2012 of reactants as compared to old conventional processes. The mathematical model developed has shown satisfactory results in simulating a reactive distillation column for the esterification of acetic acid with ethanol to produce ethyl acetate. This type of equipment was selected for the study, because it represents a complex unit operation, due to the simultaneity of reaction and separation. 8 ACKNOWLEDGMENT Fig.5 Ethyl Acetate liquid mole fraction in Ethyl Acetate This work was supported by Aligarh Muslim University, Aligarh(UP)-ndia,202002. am very much thankful to Dr. Syed Akhlaq Ahmad, Associate Professor, Department of Chemical Engineering, AMU, Aligarh, for guiding me in Aspen Plus Simulation of this work. 9 NOMENCLATURE f Mass balae fution of component i in stage. m f Phase equilibrium fution of component i in stage. eq i, R Liquid side stream fraction at stage. Z Vapor side stream fraction at stage. n Molar flow rate of component i in stream of stage. F Molar flow rate of the stream of component i to stage. Fig.6 Water liquid mole fraction in Ethyl Acetate T Temperature at stage. E Relation between the liquid and vapour streams. The above results show a qualitative agreement with the experimental data. However, the small differee between the values of the calculation and those of the experimental data may be due to some aspects of thermodynamic modeling. n this system, ideal vapour phase is a strong simplifying assumption, because acetic acid molecules are known to dimerize in the vapour phase causing considerable deviations from the ideal gas behaviour. 7 CONCLUSON n this work, all the results were obtained for steady-state using Aspen Plus TM for ethyl acetate reactive distillation column. The combination of reaction and distillation helps in achieving products of high purity and higher conversion http://www.iser.org x Mole fraction of component i in stream of stage. R Universal gas constant. v ik, Stoichiometric coefficient of component i in reaction k... Chemical potential of compound i at stage. Fugacity coefficient of component i in stream of stage Activity coefficient of component i in stream of stage ik, Kinetic order of component i in reaction k.

nternational Journal Of Scientific & Engineering Research, Volume 3, ssue 8, August-2012 5 10 REFERENCES [1] Aspen Plus help manual, Aspen Tech., 2006. [2] A.K.Jana, Process Simulation and Control using Aspen Plus. [3 C.D. Holland, Fundamentals of Multicom- ponent Distillation, New York, McGraw Hill,1981. [] J.D. Seader & Ernest J. Henley, Separation Process Priiples, 2 nd Edition, Wiley ndia Pvt.Limited, 2010. [5] Marcelo F. Alfradique & Marcelo Castier, Modeling and Simulation of Reactive Distillation Columns using Computer Algebra, Computers and Chemical Engineering,29, 1875-188,2005. [6] J.D. Seader & Ernest J. Henley, Separation Process Priiples, 2 nd Edition, Wiley ndia Pvt.Limited,2010. [7] Stichmair J.G & Frey T., Reactive Distillation Processes, Chemical and Engineering Technology,22,95-103,1999. http://www.iser.org