Impact of the Belle II Pixel Detector on CP-Violation Measurements

Similar documents
Impact of the PXD on the Vertex Reconstruction of π 0 particles

Sensitivity Study for B 0 π 0 π 0

A.Mordá. INFN - Padova. 7 th July on behalf of the Belle2 Collaboration. CP Violation sensitivity at the Belle II Experiment

CP Violation sensitivity at the Belle II Experiment

B-Physics Potential of ATLAS, CMS, LHCb and BTeV

Latest time-dependent CP-violation results from BaBar

Cracking the Unitarity Triangle

Hadronic vs e + e - colliders

CP violation in B 0 π + π decays in the BABAR experiment. Muriel Pivk, CERN. 22 March 2004, Lausanne

Future Belle II experiment at the KEK laboratory

Measurements of CP violating phases in B decays at LHCb

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

new measurements of sin(2) & cos(2) at BaBar

The 3rd Tohoku University GCOE International Symposium

What is different at Belle II?

First light from. Gagan Mohanty

Measuring the Unitarity Triangle Angle α with BaBar. Adrian Bevan KEK, 15 th September 2006

Flavour physics in the LHC era

KEKB collider and Belle detector

Picture Erice. 23 Sept 2002 K. R. Schubert (TU Dresden), QHN Erice

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Belle II perspectives on Unitarity Triangle sides and angles

B Factories. Alan Watson University of Birmingham, UK

Brief Report from the Tevatron. 1 Introduction. Manfred Paulini Lawrence Berkeley National Laboratory Berkeley, California 94720

Recent results on CKM/CPV from Belle

CP Violation and Rare B Decays at Belle

Hiroyuki Sagawa KEK OHO 1-1, Tsukuba, Ibaraki, Japan

CP Violation in B-Meson Decays

Super KEKB and Belle II: Status of the KEK Super B Factory

CP Violation in B Decays and the CKM Matrix. Emmanuel Olaiya Rutherford Appleton Laboratory Chilton,Didcot,Oxon,OX11 0QX,UK

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

Studies of CP Violation at BABAR

Flavor Physics beyond the SM. FCNC Processes in the SM

Measurement of time dependent CP violation in B φks. Mahalaxmi Krishnamurthy University of Tennessee. BaBar Collaboration Beauty 2003

B the Tevatron

New Physics search in penguin B-decays

CMS Conference Report

Precision measurement of

The other window on New Physics: CP violation at the B factories

CKM phase and CP Violation in B Decays

Heavy Quarks and τ. CVC test Michel parameters. Charm Mixing f D s

CP Violation in B Decays at BABAR

LHCb: Reoptimized Detector & Tracking Performance

Measurements of the phase φ s at LHCb

Weak Decays, CKM, Anders Ryd Cornell University

Study of charmoniumlike states with initial state radiation at Belle II

Electroweak Theory: 5

: status and prospects

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr.

First Year of BABAR/PEP-II

Lecture 14 Mixing and CP Violation

ub + V cd V tb = 0, (1) cb + V td V

Observation of Large CP Violation in the Neutral B Meson System

Early physics with the LHCb detector

Lecture 2: CPV in B system

The B-Physics Potential of LHCb, BTeV, ATLAS and CMS

Alexander Leopold Felicitas Breibeck Christoph Schwanda. for the Belle Collaboration

Lecture III. Measurement of sin 2 in B K 0 S. Measurement of sin 2 in B + -, B + - Measurement of in B DK. Direct CP Violation

Measurement of CP violation in B J/ψK 0 S. decays. Frank Meier TU Dortmund. XXIX Rencontres de Physique de la Vallée d Aoste March 1 7, 2015

THE PEP-II B-FACTORY AND THE BABAR DETECTOR

Measuring α with B ρρ and ρπ

The LHCb Upgrade. Status of LHCb The pre upgrade years. Running scenario A few selected channels.

Standard Model of Particle Physics

Recent BaBar results on CP Violation in B decays

Recent CP violation measurements

VI Charmless B Decays

Recent results on charmless B and B s decays from Belle

CP Violation in the B(s) meson system at LHCb Julian Wishahi on behalf of the LHCb collaboration

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

CP Violation in B Decays at Belle

e + e - (1) Silicon Vertex Detector

arxiv:hep-ph/ v4 18 Nov 1999

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Measurement of the CKM Sides at the B-Factories

PoS(EPS-HEP2017)662. Charm physics prospects at Belle II

Vub. Longstanding discrepancy between exclusive and inclusive V ub. V ub / V cb constrains the length of the unitarity triangle opposite the angle β.

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

Benjamin Carron Mai 3rd, 2004

Mikihiko Nakao (KEK) June 16th, 2006, SUSY06, Newport Beach, CA.

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

HQL Virginia Tech. Bob Hirosky for the D0 Collaboration. Bob Hirosky, UNIVERSITY of VIRGINIA. 26May, 2016

Particle Identification of the LHCb detector

Heavy Hadron Production and Spectroscopy at ATLAS

Reconstruction of. events in LHCb. Benjamin Carron

arxiv: v1 [hep-ex] 15 May 2017

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration

Rencontres de Moriond - EW Interactions and Unified Theories La Thuile, March 14-21, 2015

The weak interaction Part II

Status and prospects of the LHCb experiment

The Mystery of Vus from Tau decays. Swagato Banerjee

arxiv: v3 [hep-ex] 11 Feb 2013

B Mixing and Lifetime Measurements with the BABAR Detector.

IFAE 2003 Lecce. Alessio Sarti University and INFN Ferrara. BaBar CLEO. Motivation. Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions

La Fisica dei Sapori Pesanti

Physics Motivation The Vertex Locator The Outer Tracker Tracking in HERA-B and LHCb LHCb Optimization

RECENT RESULTS ON HADRONIC B DECAYS FROM BELLE

Rare Exclusive Decays. Results from BaBar on the. DPF-2002, College of William and Mary. University of California, Jeffrey Berryhill.

Measuring α with the B-factories. Adrian Bevan SCIPP 17 th Feb 04

The LHCb detector. Eddy Jans (Nikhef) on behalf of the LHCb collaboration

Transcription:

Impact of the Belle II Pixel Detector on CP-Violation Measurements Fernando Abudinén September 6, 216 1 SuperKEKB and Belle II 2 CP-Violation Measurements 3 Belle II Pixel Vertex Detector 4 B-Meson Vertex Resolution 5 Summary and Outlook

KEKB/SuperKEKB Collider Upgrade: KEKB SuperKEKB Belle Belle II 3km e+ e Colliding bunches 1 KEK = kō enerugī kasokuki kenkyū kikō high energy collider research organization At: Tsukuba, Ibaraki Prefecture, Japan

Belle/Belle II Experiment 2 KEKB/Belle SuperKEKB/Belle II operation 1999 21 218 225 Inst. Lumi. L 2.11 1 34 cm 2 s 1 8 1 35 cm 2 s 1 e /e + beam E 8/3.5 GeV 7/4 GeV Boost βγ.425.284 e /e + beam I 1.2/1.6 A 2.6/3.6 A

Nano Beam Scheme Lorentz factor L = γ ± 2er e beam size σ x,y = ε x,y β x,y ( emittance SuperKEKB 1 + σ ) ( y I ± ξ ± σ x β y 6 beam-beam parameters ) ( ) RL present KEKB R ξy Geometric factors 3

Time of Propagation counter with 2 mm quartz bars MCP-PMT readout K L /µ Detector (outside) RPC Plates and plastic scintillators with SiPM readout Superconducting Magnet homogeneous field of 1.5 T Electromagnetic Calorimeter 8 CsI Crystals, 16 X PMT/APD readout Pixel Vertex Detector 2 layer pixel detector (8MP) technology Silicon Vertex Detector 4 layer double sided strips 2 5 ns shaping time Central Drift Chamber proportional wire drift chamber 15 sense wires in 58 layers Aerogel RICH Proximity focusing RICH with silica aerogel

CP-Violation in the SM η.7.6.5.4.3.2 excluded area has CL >.95 CP-V. in the SM Weak Interaction V CKM d s = V ud V us V ub V cd V cs V cb d s b V td V ts V tb b Params: 3 Real, 1 Im.: λ= sin θ C.2, A, ρ, η Unitarity: k V ki V kj = V ud Vub + V cdvcb + V tdvtb = O(λ 3 ) O(λ 3 ) O(λ 3 ) Largest CP-V. within the SM in the B-system. sin 2β LHCb sin 2β WA ε K γ m d & m s m d α ε K CKM f i t t e r La Thuile 215 sol. w/ cos 2β < (excl. at CL >.95) α 5 V ub.1 α γ β..4.2..2.4.6.8 1. ρ

σ(e + e Hadrons) [nb] 25 2 15 1 5 Υ(1S) Υ(2S) Υ(3S) Time-dep. CP-Analysis at B-Factories Υ(4S) continuum background 9.44 9.46 1. 1.2 1.34 1.37 1.54 1.58 1.62 e + e Center-of-Mass Energy [GeV] e Υ(4S) B tag e + B CP Υ(4S) above BB prod. threshold Υ(4S) BB > 96 % Γ(B + B ) Γ(B B ) 1.6 B-Factory l J/ψ K S K z Belle 2 µm z Belle II 13 µm π + 6 t = Boost P Sig ( t, q) = z µ +µ z βγ c since B B at rest in Υ(4S) frame e t /τ B 4τ B π q B,B = 1, 1 [1 + q (A CP cos( m t) + S CP sin( m t))]

Time-dependent CP-Asymmetry a CP = N ( B, t ) N ( B, t ) N (B, t) + N ( B, t ) = A CP cos( m t) + S CP sin( m t) A CP : Direct CP Violation: A = f B f B = Ā S CP : Mixing-induced CP Violation: J/ψ K S A CP = S CP = sin(2β) 7 B B B B A CP f f B B S CP f CP

Pixel Vertex Detector Ac or tiv ep ec t i x e l Det active area gaten clearn 76 8 px 25 px m gaten+1 44.8 m clearn+1 ( 12.5 mm pixel center) SwitcherB (32 channels gate/clear) DCD-B (analog readout) DHP (digital processing) power 75 μm active area thickness ground 8 Background Closest to IP Occupancy ( r 2 ) mounting hole flexible interconnect (polyimide/copper) Inst. Lumi.: LBelle II 4 LBelle conductive layers (Al/Al/Cu) hβγibelle II < hβγibelle 2 mm / 42 μm rigid frame differential data transmission ( 1.6 Gb/s) S. talk on Sept 5 by C. Koffmane smaller z Pixel Detector needed! Technology most suited DEPleted Field Effect Transistor

9 Active Pi xel Detector The Impact Parameter Particle track parametrization t(d, φ, Ω = q p t, z, tan(λ)) d (z ): distance between point of closest approach and IP. σ d σ z Improvement by factor 2

Pixel Vertex Detector Material (scattering) Point Resolution Distance to IP σ d Mult. Scattering: φ X X Low material budget required! 1 p/ GeV/c

11 Active Pi xel Detector B CP Vertex B CP J/ψ KS π+ π, π π : Decay outside of PXD. K S J/ψ µ + µ : Both muons have at least on PXD hit. Kinematic Vertex Fit B CP Belle II Bias = 2. μm Resolution = 26 μm Belle Bias =.2 μm Resolution = 63 μm Result fitted with 3 Gaussians

12 Active Pi xel Detector B tag Vertex Resolution Algorithm: Adaptive Vertex Fit (AVF) CMS NOTE 28/33 Access: RAVE (Reconstruction in a Abstract, Versatile Environment) Track weighting according to proximity to other tracks and spatial constraint. 6µm on K S Tracks. Belle II Bias = 6 μm Res. = 53 μm B tag t = t BCP t Btag Belle Bias = 29 μm Res. = 89 μm Belle II Bias = -. Res. =.77 Belle Bias =.2 Res. =.9

t Distribution MC Analysis B CP J/ψK S a) q MC truth, ε Eff = 1 % b) q tagged, ε Eff = 35.5 % B tag B tag Impact on P( t, q, r): P Obs ( t, q) = e t τ B 4τ B [1 + q r (A CP cos( m t) + S CP sin( m t))] 13 ε Eff (Belle) = 29 %

14 Active Pi xel Detector Time-dependent CP-Analysis For B ππ: tree and penguin diags. contribute! i: A CP = S CP = sin(2α) i+ f: A CP S CP = 1 A CP sin(2α eff ) α eff = α α Extr. of α through isospin S π π. I α γ CKM-Triangle β R S π π needs z 13µm of B π π where π γγ Challenge!

15 Active Pi xel Detector Extraction of α angle from B ππ p value 1 - CL 1..8.6.4.2..8.6.4.2 w/out S π π 8 fold ambiguity on α CKM f i t t e r WINTER 12 B ππ (BABAR) B ππ (Belle) B ππ (WA) 2 4 6 8 1 12 14 16 18 1 α (deg) CKM fit 1 - CL Extrapolated to L Belle II = 5ab 1 3 6 9 12 15 18 α ( ) arxiv:hep-ex/7329 with S π π 2 fold ambiguity on α Converted γ e + e and π e + e γ req. for z Possible with L Belle II = 5 L Belle and Belle II PXD?.8.6.4 1.2 3 6 9 12 15 18 α ( )

B CP Vertex Reconstruction y / cm 3 2 γ e + e Pipe PXD 1 PXD 2 τ π.9 as =.1 nm 1 1 2 3 3 2 1 1 2 3 x γ x / cm e π Vertex ˆ= B Vertex. Kinematic Vertex Fit with spatial constraint centered at the Beam Spot. x π e + e γ e γ 16 BS B γ γ e + z BS B e + γ γ z

B z-vertex Resolution B π π γ γ e + e Events / (.6 cm ) 35 3 25 2 15 1 Entries 112 Mean -4.9 µm Std Dev 181.6 µm Events / (.6 cm ) 3 25 2 15 1 Entries 556 Mean.2 µm Std Dev 88.5 µm 5 5.3.2.1.1.2.3 B_Z - Gen. B_Z / cm No PXD Hit required 17.3.2.1.1.2.3 B_Z - Gen. B_Z / cm At least one track (e + or e ) has one PXD Hit

t Resolution Events / (.1 ps ) 18 25 2 15 1 5 t = t B CP t B tag B CP π π Entries 1316 Mean.6 ps Std Dev 3.42 ps 5 4 3 2 1 1 2 3 4 5 t - Gen. t / ps No PXD Hit required Events / (.1 ps ) 18 16 14 12 1 8 6 4 2 γ γ e + e Entries 5861 Mean -.17 ps Std Dev 2.22 ps 5 4 3 2 1 1 2 3 4 5 t - Gen. t / ps At least one track (e + or e ) has one PXD Hit

19 Active Pi xel Detector t Resolution B CP π π e + e γ t = t B CP t B tag Events / (.6 cm ) Entries 916 5 Mean 3.3 µm Std Dev 69.3 µm 4 3 2 1.3.2.1.1.2.3 B_Z - Gen. B_Z / cm Events / (.1 ps ) 4 Entries 9372 35 Mean -.14 ps Std Dev 1.76 ps 3 25 2 15 1 5 5 4 3 2 1 1 2 3 4 5 t - Gen. t / ps

2 Active Pi xel Detector Summary and Outlook Upgrade of KEK to SuperKEKB: Boost reduction, Background increase, required maintenance of vertex resolution. New Pixel Vertex Detector (PXD) for Belle II. PXD is crucial for the Belle II physics programm. Impact of the PXD is studied with Monte Carlo Simulations: Belle II t resolution is higher although βγ has been decreased! Machine commissioning started! Begin of data taking planned for 218!

Vertex of γ-conversions in B π π y / cm 3 γ e + e Pipe 2 PXD 1 PXD 2 1 1 2 3 3 2 1 1 2 3 21 x / cm Υ(4S) B 1 B 2 B 1 generic B 2 π π π γγ (B = 98.82%) π e + e γ (B = 1.17%) N Belle II = L Belle II B(Υ(4S) B B ) 2 B(B π π ) 5ab 1 1.1nb.49 2 1.91 1 6 1k events. Accept.: θ [17, 15] ECL: θ [12.4, 155.1]

Events with γ-conversions % a) If there is an event with γ-conversions How Many? 4.5 4 3.5 3 2.5 2.77% b) How many Events have at least one γ-conversion? Vertex in Events % Beam Pipe 2. % 1st. PXD Layer.6 % 2nd. PXD Layer.5 % Total inside PXD 3.1 % 2 1.5 1.5.58%.8%.1% 1 1.5 2 2.5 3 3.5 4 Number of γ-conversions c)... and at least one γ-conversion or one π e + e γ decay? π e + e γ 2. % Total π γ 5.5 % 22 Requirement: All converted γ in accept. and not converted in ECL

t t t Active Pi xel Detector e +, e e +, e Track Reconstruction / cm σ d.25.2 Fit / GeV/c p 3 2.5 2.15 1.5.1 1.5.5.5 1 1.5 2 2.5 3 MC p / GeV/c t.5 1 1.5 2 2.5 3 MC p / GeV/c t / cm σ z 23.25.2.15.1.5.5 1 1.5 2 2.5 3 p / GeV/c MC t MC / p Fit p 1.1 1.8 1.6 1.4 1.2 1.98.96.94.92.9.5 1 1.5 2 2.5 3 p / GeV/c MC t