Material Science II. d Electron systems

Similar documents
Metal-insulator transitions

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Chapter 1 Electronic and Photonic Materials - DMS. Diluted Magnetic Semiconductor (DMS)

Colossal magnetoresistance:

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

Material Science II. d Electron systems

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 7 Feb 2002

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Mott insulators. Mott-Hubbard type vs charge-transfer type

SIMULATIONS ON DILUTE MAGNETIC SEMICONDUCTOR PROPERTIES

Assessment of Variation in Zero Field Hall Constant of Colossal Magnetoresistive Manganites (Re1-x AxMnO3)

Exchange interactions

High temperature superconductivity

Magnetism in correlated-electron materials

Metal-insulator transition by isovalent anion substitution in Ga 1-x Mn x As: Implications to ferromagnetism

EXCHANGE INTERACTIONS: SUPER-EXCHANGE, DOUBLE EXCHANGE, RKKY; MAGNETIC ORDERS. Tomasz Dietl

Presented by: Göteborg University, Sweden

Transport and Magnetic Properties of La 0.85 Ca Mn 1-x Al x O 3 Manganites

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

NiO - hole doping and bandstructure of charge transfer insulator

Magnetic Circular Dichroism spectroscopy in epitaxial La 0.7 Sr 0.3 MnO 3 thin films

EXTRINSIC SEMICONDUCTOR

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs

Contents. Acknowledgments

Photoemission and the electronic structure of magnetic oxides. Dan Dessau University of Colorado, Boulder Duane F625

Material Science I. p electron systems Kanoda II. d electron systems Fujimori

Material Science. I. p electron systems. Kanoda. II. d electron systems. Fujimori. Download lecture note

Ultrafast X-ray Studies of Complex Materials: Science Challenges and Opportunities

Correlatd electrons: the case of high T c cuprates

Metal-Insulator Transition in Mn Perovskite Compounds

Spintronics at Nanoscale

High T C copper oxide superconductors and CMR:

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Angle-Resolved Two-Photon Photoemission of Mott Insulator

On-site Coulomb energy versus crystal-field splitting for the insulator-metal transition in La 1Àx Sr x TiO 3

per unit cell Motif: Re at (0, 0, 0); 3O at ( 1 / 2, 0), (0, 0, 1 / 2 ) Re: 6 (octahedral coordination) O: 2 (linear coordination) ReO 6

2005 EDP Sciences. Reprinted with permission.

Electronic and magnetic properties of transition metal compounds: An x-ray spectroscopic study

Heavy Fermion systems

Fundamental concepts of spintronics

Making Semiconductors Ferromagnetic: Opportunities and Challenges

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

Department of Electrical Engineering and Information Systems, Tanaka-Ohya lab.

ARTICLE IN PRESS. Physica B

Electronic structure calculations results from LDA+U method

MnO. Sr x. La 1-x. Temperature (K) Paramagnetic. Metal T C. Paramagnetic Insulator. Ferromagnetic. Metal T N. Ferromagnetic. Spin-canted Insulator

arxiv: v1 [cond-mat.mes-hall] 14 Aug 2012

Spontaneous Magnetization in Diluted Magnetic Semiconductor Quantum Wells

Semiconductors. SEM and EDAX images of an integrated circuit. SEM EDAX: Si EDAX: Al. Institut für Werkstoffe der ElektrotechnikIWE

Direct Electronic Structure Measurements of the Colossal Magnetoresistive Oxides.

EECS130 Integrated Circuit Devices

Superconductivity in Fe-based ladder compound BaFe 2 S 3

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

University of Bristol. 1 Naval Research Laboratory 2 II. Physikalisches Institut, Universität zu Köln

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi 2 Te 3

Magneto-Optical Properties of Quantum Nanostructures

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Injection of Optically Generated Spins through Magnetic/Nonmagnetic Heterointerface: Ruling out Possible Detection Artifacts

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Foundations of Condensed Matter Physics

CLASS 12th. Semiconductors

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Magnetic Moment Collapse drives Mott transition in MnO

Lecture 7: Extrinsic semiconductors - Fermi level

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

ELEMENTARY BAND THEORY

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology

single-layer transition metal dichalcogenides MC2

Research Highlights. Salient results from our group. Mixed phosphides in Sn-P and Sn-Mn-P systems

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013)

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

Semiconductor Physics and Devices Chapter 3.

EE143 Fall 2016 Microfabrication Technologies. Evolution of Devices

Solid Surfaces, Interfaces and Thin Films

New Hamiltonian and Cooper pair s origin of pseudogap and colossal magnetoresistance in manganites

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Electronic structure of correlated electron systems. G.A.Sawatzky UBC lecture

Phases of Na x CoO 2

High-T c superconductors

Luigi Paolasini

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

Quantum Condensed Matter Physics Lecture 12

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

On conduction mechanism in paramagnetic phase of Gd based manganites

EECS143 Microfabrication Technology

Australian Journal of Physics

Supporting information Chemical Design and Example of Transparent Bipolar Semiconductors

Giant Magnetoresistance

Self-compensating incorporation of Mn in Ga 1 x Mn x As

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

Transcription:

Material Science II. d Electron systems 1. Electronic structure of transition-metal ions (May 23) 2. Crystal structure and band structure (June 13) 3. Mott s (June 20) 4. Metal- transition (June 27) 5. High-temperature superconductivity (July 4) 6. Spin-related phenomena (July 11)

- Materials, physical properties - Electronic structure 6.2 Magnetic semiconductors - Materials, physical properties - Electronic structure

4. Metal- transition 4.3 Filling-controlled metal- transition Bandwidth control Mn 4+ Mn 3+ Fermi-liquid to Mott : Ti, V Giant magnetoresistance: Mn Filling control Giant thermopower: Co M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 1998

U/W or /W Insulator BANDWIDTH U/W or /W ~ 1 n 4 Filling-controlled MIT Bandwidth-controlled MIT n M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 1998

Tc Giant magneto-resistance La 1-x Sr x MnO 3 Resistance Resistance La 1-x Sr x MnO 3 Temperature Magnetic field Y. Tokura et al., J. Phys. Soc. Jpn. 1994

4. Metal- transition 4.3 Filling-controlled metal- transition Bandwidth control Nd Pr Fermi-liquid to Mott :Ti, V Mn 4+ Mn 3+ Giant magnetoresistance: Mn Filling control Giant thermopower: Co M. Imada, A. Fujimori and Y. Tokura, Rev. Mod. Phys. 1998

Filling-controlled MIT /W Insulator Pr 1-x Ca x MnO 3 BANDWIDTH /W ~ 1 Hole doping Nd 1-x Sr x MnO 3 La 1-x Sr x MnO 3 n 4 Bandwidth-controlled MIT

Electronic phase diagram La 1-x Sr x MnO 3 Nd 1-x Sr x MnO 3 Pr 1-xCa x MnO 3 T C T C Ferromagnetic metal Insulator Ferromagnetic metal Charge-ordered Large Doped hole content x Doped hole content x Bandwidth W Doped hole content x Small W cos 2 Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 1999

Spin-charge-orbital ordering Pr 1-x Ca x MnO 3 Charge-ordered Mn 3+ :Mn 4+ =1:1 Mn 3+ :Mn 4+ =1:2 Large Doped hole content x Jahn-Teller distortion of MnO 6 octahedron for the Mn 3+ ion Mn 3+ (t 2g3 e g ) Mn 4+ (t 2g3 ) d 3z2-r2 d x2-y2

Colossal magneto-resistance Resistivity change by pulsed electric field Insulator-to-metal transition induced by magnetic or electric field Y. Tomioka et al., Phys. Rev. B 1996 A. Asamitsu et al., Nature 1997

Tc Giant magneto-resistance La 1-x Sr x MnO 3 Resistance Resistance La 1-x Sr x MnO 3 Temperature Magnetic field Y. Tokura et al., J. Phys. Soc. Jpn. 1994

- Materials, physical properties - Electronic structure 6.2 Magnetic semiconductors - Materials, physical properties - Electronic structure

Parent compounds 6. Spin-related phenomena Electronic phase diagram La 1-x Sr x MnO 3 Nd 1-x Sr x MnO 3 Pr 1-xCa x MnO 3 T C T C Ferromagnetic metal Insulator Ferromagnetic metal Charge-ordered Large Doped hole content x Doped hole content x Bandwidth W Doped hole content x Small W cos 2 Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 1999

small Charge-transfer energy Valence: 2-1-. + 2+ 3+ 4+ 5+ 1.0 1.5 large small 3.5 4.0 large Transition-metal ions 1.5 1.6 1.5 1.8 2.5 S 0.8 1.0 2.1 1.2 1.8 2.2 Non-TM ions large large small small small large

Zaanen-Sawatzky-Allen phase diagram Schematic Real materials W p-band metal Charge-transfer Mott-Hubbard d-band metal U Negative charge-transfer energy p-band metal RNiO 3 Charge-transfer Mott-Hubbard W d-band metal

Mott-Hubbard-type Charge-transfer-type 3d 3d O 2p W W U 3d ZR-like O 2p 3d U Zhang-Ricelike states strong p-d hybridization U < U > Gap ~ U - W Gap ~ -W W: Band width U : Atomic Coulomb energy (Coulomb integral) : Charge-transfer enrgy

Electronic states of Mn ion O 2p orbitals Mn 3d orbitals (d 4 L, Jahn-Teller distortion of Mn 3+ ion octahedron Y. Tokura Hund s rule 3 > Crystal field High-spin state

Electronic phase diagram La 1-x Sr x MnO 3 Nd 1-x Sr x MnO 3 Pr 1-xCa x MnO 3 T C T C Ferromagnetic metal Insulator Ferromagnetic metal Charge-ordered Large Doped hole content x Doped hole content x Bandwidth W Doped hole content x Small W cos 2 Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 1999

3. Mott s 3.7 Insulator-to-metal transition Carrier doping (Filling control) Mott-Hubbard type Charge-transfer type U > W > W 3d W 3d 3d W U O 2p U O 2p Gap ~ U - W 3d Gap ~ -W

Double exchange model (ZR-like) (ZR-like) e g 10Dq t 2g S: i : i e t g 2 g spin spin J H Hund s rule

Electronic phase diagram La 1-x Sr x MnO 3 Nd 1-x Sr x MnO 3 Pr 1-xCa x MnO 3 T C T C Ferromagnetic metal Insulator Ferromagnetic metal Charge-ordered Large Doped hole content x Doped hole content x Bandwidth W Doped hole content x Small W cos 2 Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 1999

Band structure of La 1-x Sr x MnO 3 Photoemission spectra Band-structure calculation e g band t 2g band O2p band X X A. Chikamatsu et al., Phys. Rev. B 2006

Fermi surfaces of La 1-x Sr x MnO 3 Band dispersion and self-energy Jahn-Teller phonon mode Re(k,) Re(k,) 0 Im(k,) Fermi liquid K. Horiba et al., Phys. Rev. Lett. 2016-0.5 0 (ev)

- Materials, physical properties - Electronic structure 6.2 Magnetic semiconductors - Materials, physical properties - Electronic structure

6.2 Magnetic semiconductors Antiferromagnetic/spin-glass Random Mn substitution Mn 2+ (d 5 ) II-VI semiconductors Cd 2+ Te Zn 2+ S Cd 2+ 1-xMn 2+ xte: Giant Faraday rotation Optical isolator Zn 2+ 1-xMn 2+ xs: Luminescent material

6.2 Magnetic semiconductors Ferromagnetic metal/conductor III-V semiconductors In 3+ As Ga 3+ As Non-thermal equilibrium growth by MBE In 3+ 1-xMn 2+ (d 5 ) x As + (hole) x Ga 3+ 1-xMn 2+ (d 5 ) x As + (hole) x Curie temperature Mn H. Ohno et al., J. Magn. Magn. Mater., 1999 H. Munekata et al., Phys. Rev. Lett. 1989

6.2 Magnetic semiconductors High-temperature ferromagnetic semiconductors for future spintronics Non-volatile memories GMR devices Novel devices utilizing spin injection Mn Si, Ge Mn in GaAs, InAs,... Y. Ohno et al., Nature 1999

6.2 Magnetic semiconductors Giant magneto-resistance Tc ~ Magnetization A. Oiwa et al., Solid State Commun. 1997 F. Matsukura et al. Phys. Rev. B 1998

Tc Giant magneto-resistance La 1-x Sr x MnO 3 Resistance Resistance La 1-x Sr x MnO 3 Temperature Magnetic field Y. Tokura et al., J. Phys. Soc. Jpn. 1994

6.2 Magnetic semiconductors Ferromagnetic metal/conductor III-V semiconductors Ga 3+ As Ga 3+ 1-xMn 2+ (d 5 ) x As + (hole) In 3+ As In 3+ 1-xFe 3+ (d 5 ) x As:Be + (electron) Curie temperature Fe H. P. Ohno N. Hai et al., J. Appl. Magn. Phys. Magn. Lett. Mater., 2012 1999 H. Munekata et al., Phys. Rev. Lett. 1989

6.2 Magnetic semiconductors Fe-based high-t c superconductor Ba 1-x K x Fe 2 As 2 New diluted magnetic semiconductor Ba 1-x K x (Zn 1-y Mn y ) 2 As 2 Magnetization Ba Zn As Resistivity Fe(d 6 ) hole e - Mn(d 5 ) hole e - Ba 2+ K + Ba 2+ K + K. Zhao et al., Nat. Commun. 2013

- Materials, physical properties - Electronic structure 6.2 Magnetic semiconductors - Materials, physical properties - Electronic structure

Mn 3d band 6. Spin-related phenomena 6.2 Magnetic semiconductors Carrier-induced ferromagnetism through p-d via exchange p hole U Hole Conduction band N-1 ev Mn 3d band valence p band p-d exchange ingteraction N~ - 1 ev Ga 3+ Mn 3+ Mn 2+ + hole Atom substitution Strong p-d hybridization

6.2 Magnetic semiconductors Search for high-temperature ferromagnetic semiconductors Theoretical prediction Mn content ~ hole content ~ 5% T. Dietl et al, Science, 2000 Room temperature ferromagnetic semiconductors wide-gap semiconductor-based materials: Ga 1-x Mn x N,Zn 1-x Co x O,Ti 1-x Co x O 2,.

6.2 Magnetic semiconductors Soft x-ray ARPES of Ga 1-x Mn x As Calculated band structure of GaAs Resonance ARPES of Ga 1-x Mn x As Off res. On res. E F ~100 mev VBM HH SO LH Impurity band Mn 3d M. Kobayashi et al., Phys. Rev. B 2014