Constraints on new physics from rare (semi-)leptonic B decays

Similar documents
Flavour physics beyond the Standard Model

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Danny van Dyk. B Workshop Neckarzimmern February 19th, Danny van Dyk (TU Dortmund) News on B K µ + µ 1 / 35

LHCb results relevant to SUSY and BSM physics

Based on arxiv:0812:4320 In collaboration with A. Dedes, J Rosiek. Informal CIHEP Pizza Lunch February 6, 2009

Probing New Physics Through B s Mixing

Composite Higgs and Flavor

Long distance weak annihilation contribution to

Flavor Physics Part 2

Rare decays of beauty mesons

Dipole operator constraints on composite Higgs models

Recent results from rare decays

Rare beauty and charm decays at LHCb

The pheno analysis of B K ( ) µ + µ decays in 2011+

S = 2 decay in Warped Extra Dimensions

Andreas Crivellin. Flavor Physics beyond the Standard Model

theory perspective LEPP JC, 9 September 2011 Cornell University Flip Tanedo Flip s Beamer Theme 1/17 17

Search for Physics Beyond the Standard Model at B Factories

Rare decays at LHCb Siim Tolk (NIKHEF, Amsterdam) on behalf of the LHCb Collaboration

New Physics or hadronic corrections

B Kl + l at Low Hadronic Recoil

Measuring γ. γ is the phase of V ub. Can be determined using B ± decays. These diagrams result in the same final state for D 0 K + K -, K S π + π.

Unitary Triangle Analysis: Past, Present, Future

LHCb New B physics ideas

Federico Mescia. Review of Flavour Physics. ECM & ICC, Universitat de Barcelona. FFP14, July 17 th 2014 Marseille. - Outline

New Probes of New Physics with Leptonic Rare B Decays

Electroweak penguin measurements

Matter, antimatter, colour and flavour in particle physics

Theoretical Review on Lepton Universality and LFV

Scalar leptoquarks from GUT to accommodate the B-physics anomalies

RESULTS FROM B-FACTORIES

Rare decays, radiative decays and b sll transitions at LHCb

SO(10) SUSY GUTs with family symmetries: the test of FCNCs

CP violation in quark flavor physics

Anomalies in Flavour physics

b sll 2015 and New Physics

Global fits to radiative b s transitions

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

Rare B decay searches with BABAR using hadronic tag reconstruction

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

Lepton flavor nonuniversality

Radiative and EW Penguin B-Decays with the Belle Detector. Beauty 2003

Discussion on (Heavy) Flavor Physics

Beyond Standard Model Effects in Flavour Physics: p.1

Angular Analysis of the Decay

New Physics & Future B Physics Programs CP violation Rare Decays

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Rare Hadronic B Decays

PoS(FPCP2009)013. Fabrizio Scuri I.N.F.N. - Sezione di Pisa - Italy

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

B-physics with ATLAS and CMS

Flavor physics. Yuval Grossman. Cornell. Y. Grossman Flavor physics APS2009, Denver, 5/2/2009 p. 1

Sgoldstino rate estimates in the SHiP experiment

Theory of CP Violation

LHCb results and prospects

Electroweak Theory: 5

Experimental prospects for B physics and discrete symmetries at LHC and future projects

Theory overview on rare eta decays

Results on top physics by CMS

Future Belle II experiment at the KEK laboratory

Penguin decays at LHCb

Flavour and CP Violation Phenomenology in SUSY with an SU(3) Flavour Symmetry

Ricerca Indiretta di Supersimmetria nei Decadimenti dei Mesoni B

arxiv: v1 [hep-ex] 10 Aug 2011

Radiative and Electroweak Penguin Decays of B Mesons

CP Violation Beyond the Standard Model

LHCb Discovery potential for New Physics

Low Scale Flavor Gauge Symmetries

Studies of rare B meson decays with the CMS detector

Perspectives in B Physics: Results from LHCb

CP Violation in B Physics Puzzles, Opportunities at LHCb,

Higgs Signals and Implications for MSSM

PoS(Kruger 2010)048. B X s/d γ and B X s/d l + l. Martino Margoni SLAC-PUB Universita di Padova and INFN

Beauty physics with B s and Λ b

Charm CP Violation and the electric dipole moment of the neutron

Washington University in St. Louis. W. Altmannshofer, BD and A. Soni, Phys. Rev. D 96, (2017) [arxiv: [hep-ph]] and in preparation.

A talk for string theorists.

Logitudinal Lepton Polarization Asymmetry in pure Leptonic B Decays

Lepton Violation Studies and Rare Radiative Decays in BaBar. John M. LoSecco, Notre Dame. for the BaBar Collaboration. Miami 06, December 2006

WZ di-boson production at CMS

Probing lepton flavour violation in the Higgs sector with hadronic! decays

Inclusive radiative electroweak penguin decays:

Theoretical study of rare B/D decays

Quark flavour physics

Non-local 1/m b corrections to B X s γ

Effective Field Theory and EDMs

Standard Model updates and new physics analysis with the Unitarity Triangle fit

Rencontres de Moriond - EW Interactions and Unified Theories La Thuile, March 14-21, 2015

Results on Searches for New Physics at B Factories

Searches for Leptonic Decays of the B-meson at BaBar

Andreas Crivellin ITP Bern. Rare decays and MSSM phenomenology

The LHC Heavy Flavour Programme

SuperB Report Intensity Frontier Workshop

A new long-distance contribution to B K/π l + l decays

B-meson anomalies & Higgs physics in flavored U(1) model

Ricerca di nuova fisica a HERA

Probing beyond the Standard Model with B Decays

Lepton Universality Tests with Kaons

Lecture 18 - Beyond the Standard Model

Recent CP violation measurements

Transcription:

Rencontres de Moriond, QCD and High Energy Interactions, 12 March 2013 Constraints on new physics from rare (semi-)leptonic B decays David M. Straub Johannes Gutenberg University Mainz

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays What s new? O O exp /O SM (σ O /O) exp (σ O /O) th BR(B s µ + µ ) 0.9 40% 9% BR(B Kµ + µ ) lo 1.0 10% 25% F L (B K µ + µ ) lo 0.8 10% 5% F L (B K µ + µ ) lo 0.9 20% 50% A FB (B K µ + µ ) 0 1.2 25% 5% A FB (B K µ + µ ) hi 0.8 15% 35%... Also: B πµµ, hadr. decays (LHCb), B Kν ν, B D ( ) τν (BaBar), B τν (Belle),... David Straub (JGU Mainz) 2

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Implications No sign of new physics, but flavour experiments extremely valuable to constrain BSM, especially given inconclusive direct searches SM provides dominant contribution to flavour observables, but plenty of room for natural O(50%) effects Clean observables (B s,d µµ,...) Null tests (CP asymmetries,... ) Theory progress (lattice... ) David Straub (JGU Mainz) 3

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays 3 types of new physics in b s transitions Magnetic dipole operators Flavour-changing Z couplings Scalar operators David Straub (JGU Mainz) 4

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Pattern of effects allows to distuinguish models model variant C 7 C 7 C Z C Z C S,P SUSY MFV generic Composite Higgs triplet bidoublet David Straub (JGU Mainz) 5

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Magnetic dipole operators David Straub (JGU Mainz) 6

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Constraints on magnetic penguins 0.5 0.5 Im C 7 0.0 Im C 7 ' 0.0 0.5 0.5 0.5 0.0 0.5 Re C 7 NP 0.5 0.0 0.5 Re C 7 ' Constraints from B X s γ, B (K, X s )µµ, B K γ, combined (0, 0) =SM [Altmannshofer et al. 1111.1257, Altmannshofer and DS 1206.0273] see also [Bobeth et al., Matias et al., Descotes-Genon et al.] David Straub (JGU Mainz) 7

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Scalar operators David Straub (JGU Mainz) 8

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Scalar penguins & B s µµ Can lift the helicity-suppression present in the SM potentially huge effects Prime example: MSSM with large tan β mbs mµ m 2 A µa t m 2 t tan β 3 David Straub (JGU Mainz) 9

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Scalar penguins & B s µµ Can lift the helicity-suppression present in the SM potentially huge effects Prime example: MSSM with large tan β mbs mµ m 2 A µa t m 2 t tan β 3 BR exp = (3.2 +1.5 1.2 ) 10 9 BR SM = (3.5 ± 0.3) 10 9 [LHCb-CONF-2012-17], [De Bruyn et al. 1204.1735, Buras et al. 1208.0934] David Straub (JGU Mainz) 9

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays B s µ + µ vs. SUSY 2.0 1.5 1.0 SM4 MSSM-LL MSSM-RVV2 MFV LHCb 95% C.L. 0.5 0.0 MSSM-AKM MSSM-AC SM 0 10 20 30 40 50 Moriond 2012 [DS 1205.6094] David Straub (JGU Mainz) 10

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays David Straub (JGU Mainz) 11

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays What the measurement actually tells us about SUSY: Large tan β with light pseudoscalar Higgs is disfavoured. 60 b a d tanβ 50 40 30 20 10 c m f = 2 TeV (a) µ = 1 TeV, A t > 0 (b) µ = 4 TeV, A t > 0 (c) µ = 1.5 TeV, A t > 0 (d) µ = 1 TeV, A t < 0 gray: A, H τ + τ [Altmannshofer et al. 1211.1976] 200 400 600 800 1000 1200 M A GeV David Straub (JGU Mainz) 12

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Flavour-changing Z couplings Scalar operators David Straub (JGU Mainz) 13

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Constraints on Z penguins 6 6 4 4 2 2 Im C Z 0 Im C Z ' 0 2 2 4 4 6 6 4 2 0 2 4 6 Re C Z NP 6 6 4 2 0 2 4 6 Re C Z ' Constraints from B (K, K, X s )µµ and B s µµ, combined (0, 0) =SM [Altmannshofer et al. 1111.1257, Altmannshofer and DS 1206.0273] David Straub (JGU Mainz) 14

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Concrete example: partial compositeness Solving the hierarchy problem without SUSY: the Higgs is composite Successful theory of flavour requires quarks to be partially composite L λ L ψ L O R + λ R ψ R O L David Straub (JGU Mainz) 15

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Concrete example: partial compositeness Solving the hierarchy problem without SUSY: the Higgs is composite Successful theory of flavour requires quarks to be partially composite L λ L ψ L O R + λ R ψ R O L UV IR Related by AdS/CFT to models with a warped extra dimension [Randall/Sundrum] u,d,c,s,br tr,ql 0 5 10 15 20 25 30 35 [A. Weiler] David Straub (JGU Mainz) 15

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Z penguins from partial compositeness After EWSB, composite-elementary mixing leads to correlated tree-level contributions to flavour-changing Z couplings...... and Z b b David Straub (JGU Mainz) 16

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Numerical analysis of Z penguins in 3 models Two choices for the fermion content (irreps of SU(2) L SU(2) R U(1) X ) (2, 2) 2/3 + (2, 2) 1/3 + (1, 1) 2/3 + (1, 1) 1/3 ( bidoublet model ) (2, 2)2/3 + (1, 3) 2/3 + (3, 1) 2/3 ( triplet model ) Two choices for the flavour structure flavour anarchy U(2) 3 flavour symmetry see [Barbieri et al. 1203.4218, Barbieri et al. 1211.5085, DS 1302.4651] and ref. therein David Straub (JGU Mainz) 17

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays B s µµ vs. B d µµ Partial compositeness: triplet + anarchy bidoublet + anarchy bidoublet + U(2) 3 [DS 1302.4651] David Straub (JGU Mainz) 18

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays B s µµ vs. B K µµ Partial compositeness: triplet + anarchy bidoublet + anarchy bidoublet + U(2) 3 [DS 1302.4651] David Straub (JGU Mainz) 19

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays K + π + ν ν vs. K L π 0 ν ν Partial compositeness: triplet + anarchy bidoublet + anarchy bidoublet + U(2) 3 [DS 1302.4651] David Straub (JGU Mainz) 20

Introduction Magnetic penguins Scalar penguins Z penguins Constraints on NP from B decays Conclusions 1. No spectacular deviations from the SM have been found, but O(50%) modifications of the SM only start to be probed 2. B s µ + µ measurement rules out MSSM at large tan β with light pseudoscalar Higgs 3. Flavour-changing Z penguins are typical for models with partial compositeness (composite Higgs, RS... ). Rare decays now start to probe these effects and allow to distinguish between different models. David Straub (JGU Mainz) 21

Backup David Straub (JGU Mainz) 22

The b sγ operators H eff = 4 G F V tb V ts 2 8 (C i O i + C i O i ) + h.c.. i=7 O ( ) 7 = em b 16π 2 ( sσ µνp R(L) b)f µν O ( ) 8 = g sm b 16π 2 ( sσ µνt a P R(L) b)g µν a O ( ) 7,8 mix under renormalization C ( )NP 7 (µ b ) = 0.623 C ( )NP 7 (µ h ) + 0.101 C ( )NP 8 (µ h ) SM: C 7 = O(m s /m b ), C 7 R David Straub (JGU Mainz) 23

Z penguins L eff = g c w sγ µ [δg L P L δg R P R ] b Z µ C ( ) Z = 8π2 e 2 V tb V δg L,R ts They contribute to the usual Wilson coeffcients as C ( ) 9 = (1 4sw)C 2 ( ) Z C ( ) = 10 C( ) Z David Straub (JGU Mainz) 24

Properly defining FC Z couplings L Z eff = g c W Z µd i γ µ [ (g ij L + δg ij L)P L + (g ij R + δg ij R)P R ] d j. (g ii L) tree = 1 2 + 1 3 s2 W (g ii R) tree = 1 3 s2 W (g i j L,R) tree = 0 (g ij L) (g=0) 1-loop = m2 t 16π 2 v 2 V ti V tj L NP eff = 1 2 n,a ( ) O ij 1L = i Q i Lγ µ Q j L H D µh ( ) O ij 2L = i Q i Lτ a γ µ Q j L i,j H τ a D µh ( ) δg ij L = v 2 c ij 4Λ 2 1L + 1 4 cij 2L (g ij R) (g=0) 1-loop = 0 c ij na Λ 2 Oij na ( ) O ij 1R = i D i Rγ µ D j R H D µh δg ij R = v 2 4Λ 2 cij 1R [Guadagnoli and Isidori 1302.3909] David Straub (JGU Mainz) 25

Scalar and pseudoscalar operators H eff = 4 G F V tb V ts 2 (C i O i + C i O i ) + h.c.. i=s,p O ( ) S = e2 16π 2 m b m Bs ( sp R(L) b)( ll), O ( ) P = e2 16π 2 m b m Bs ( sp R(L) b)( lγ 5 l), O ( ) S,P are RG invariant SM: C ( ) S,P = 0 David Straub (JGU Mainz) 26

Can BR(B s µ + µ ) be suppressed in the MSSM? BR B s Μ Μ BR B s Μ Μ SM 1.5 1.0 0.5 0.0 0.05 0.00 0.05 0.10 0.15 C P C S Yes. By up to 50%. David Straub (JGU Mainz) 27

B s µ + µ : theoretical progress Dramatic increase in experimental precision need to reevaluate TH errors BR(B s µ + µ ) SM τ Bs f 2 B s V tb V ts 2 Y 2 (m 2 t /m 2 W ) = (3.23 ± 0.27) 10 9 NLO M t ΤB s V ts State of the art: [Buras et al. 1208.0934] Using f Bs = (227 ± 8) MeV Missing NLO corrections estimated by analogy to K πν ν, but might be larger. Full NLO calculation desirable. f Bs David Straub (JGU Mainz) 28

B s µ + µ : theoretical progress To relate the theoretical BR to experiment, two correction factors have to be taken into account (by the experimentalists) Emission of soft photons, depending on the experimental cut on E γ : O( 10%) shift [Buras et al. 1208.0934] Γ s leads to difference between flavour-averaged time-integrated rate and the unmixed one (t = 0): O(+10%) shift [De Bruyn et al. 1204.1735] David Straub (JGU Mainz) 29

B s µ + µ beyond the SM Two types of contributions: (pseudo)vector and (pseudo)scalar H eff C i O i + C i O i i ( ) ] BR(B s µ + µ ) [ S 2 1 4m2 µ + P 2 mb 2 s S = m B s 2 (C S C S) P = m B s 2 (C P C P) + m µ (C 10 C 10) David Straub (JGU Mainz) 30

B K µ + µ : a gold mine for new physics searches Angular distribution gives access to many observables d 4 Γ dq 2 d cos θ l d cos θ K dφ = i,a I (a) i (q 2 ) }{{} angular coefficient f(θ l, θ K, φ) }{{} dependence on angles Self-tagging decay: straightforward to extract CP asymmetries David Straub (JGU Mainz) 31

B K µ + µ observables Separate CP-violating and -conserving effects, normalize to reduce form factor uncertainties CP asymmetries ( A (a) i (q 2 ) = I (a) i ) / (q 2 ) Ī (a) d(γ + Γ) i (q 2 ) dq 2 CP-averaged angular coefficients ( S (a) i (q 2 ) = I (a) i ) / (q 2 ) + Ī (a) d(γ + Γ) i (q 2 ) dq 2 David Straub (JGU Mainz) 32

B K µ + µ observables: status Measured by LHCb (also Belle, BaBar, CDF) BR, S s 6( A FB ), S c 2( F L ), S 3 Not measured (or with poor precision), but sensitive to NP S 4, S 5, A 7, A 8, A 9 David Straub (JGU Mainz) 33

B K µ + µ : low vs. high q 2 Different theoretical tools required in the two kinematical limits. 0.2 0.0 A FB 0.2 0.4 0.6 5 10 15 q 2 GeV 2 Low q 2 Non-factorizable corrections not proportional to form factors can be calculated by means of QCD factorization [Beneke et al. hep-ph/0106067,... ] Form factors can be calculated by means of QCD sum rules on the light cone [Ball and Zwicky hep-ph/0412079] David Straub (JGU Mainz) 34

B K µ + µ : low vs. high q 2 Different theoretical tools required in the two kinematical limits. 0.2 0.0 A FB 0.2 0.4 0.6 5 10 15 q 2 GeV 2 High q 2 Non-perturbative corrections beyond form factors are negligible [Beylich et al. 1101.5118] Form factors are poorly known. Lattice! David Straub (JGU Mainz) 34

B K µ + µ : theory vs. experiment CDF CDF CDF Belle Belle Belle B B 0 BaBar BaBar BaBar LHCb LHCb LHCb 0.8 0.6 0.4 0.2 0.0 0.2 0.8 0.6 0.4 0.2 0.0 0.2 0.8 0.6 0.4 0.2 0.0 0.2 A FB 16 Everything consistent with the SM up to now. At high q 2, theory precision already saturated... [Altmannshofer and DS 1206.0273] David Straub (JGU Mainz) 35

B K µ + µ : theory vs. experiment CDF CDF CDF Belle Belle Belle B B 0 BaBar BaBar BaBar LHCb LHCb LHCb 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.4 0.2 0.0 0.2 0.4 0.6 0.8 0.4 0.2 0.0 0.2 0.4 0.6 0.8 F L 1,6 F L 14.18,16 F L 16 Everything consistent with the SM up to now. At high q 2, theory precision already saturated... [Altmannshofer and DS 1206.0273] David Straub (JGU Mainz) 35

B K µ + µ : theory vs. experiment CDF CDF CDF Belle Belle Belle BaBar BaBar BaBar LHCb LHCb LHCb 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 BR B K Μ Μ 1,6 10 7 BR B K Μ Μ 14.18,16 10 7 BR B K Μ Μ 16 10 7 Everything consistent with the SM up to now. At high q 2, theory precision already saturated... [Altmannshofer and DS 1206.0273] David Straub (JGU Mainz) 35

The two-site picture Consider 1 set of resonances (4D) composite sector elementary sector Captures the most relevant phenomenology (in particular for tree-level effects) Spin-1 resonances of mass m ρ = g ρ f Spin- 1 2 resonances of mass m ψ = Yf David Straub (JGU Mainz) 36

Setup composite sector elementary sector L s = Qi m i Q Qi Ū i m i R Ui Di m i R ( ) Di + Y ij Q i U LHU j + R Y ij Q i D LHD j + R h.c L mix = m j Q λij L qi L Qj R + mi Rλ ij RuŪi L uj R + mi Rλ ij Rd D i L d j R David Straub (JGU Mainz) 37

Setup: the triplet model L triplet mix = m j L λij L qi L Qj R + mi Rλ ij RuŪi L uj R + mi Rλ ij Rd D i L d j R ( ) L = (Q Q T T 5 3 ) = B T 2 3 (2, 2) 2 3 R = U 5 3 U D (1, 3) 2 3 b L mixes with B which is an eigenstate of P LR which exchanges SU(2) L SU(2) R David Straub (JGU Mainz) 38

Setup: the bidoublet model SU(3) c SU(2) L SU(2) R U(1) X L U = (Q u Q u) 3 2 2 L D = (Q d Q d) 3 2 2 1 3 U 3 1 1 D 3 1 1 1 3 2 3 2 3 ( ) L bidoublet s = tr[ LiU mi Q u L i U] Ū i m i U Ui + Y ij U tr[ Li UH] L U j ] + R h.c +(U, u D, d) L bidoublet mix = m Qu λ ij Lu qi L Qj + Ru m Uλ ij RuŪi L uj R + (U, u D, d), David Straub (JGU Mainz) 39

K + π + ν ν vs. K L µ + µ Partial compositeness: triplet + anarchy bidoublet + anarchy bidoublet + U(2) 3 [DS 1302.4651] David Straub (JGU Mainz) 40

Anarchic bidoublet model: Z couplings [DS 1302.4651] David Straub (JGU Mainz) 41

Anarchic triplet model: Z couplings [DS 1302.4651] David Straub (JGU Mainz) 42

U(2) 3 bidoublet model: Z couplings [DS 1302.4651] David Straub (JGU Mainz) 43

Constraints on vector and axial vector Z couplings 6 6 4 4 2 2 Im C ZV 0 Im C ZA 0 2 2 4 4 6 6 4 2 0 2 4 6 Re C ZV 6 6 4 2 0 2 4 6 NP Re C ZA Constraints from B (K, K, X s )µµ and B s µµ, combined (0, 0) =SM [Altmannshofer et al. 1111.1257, Altmannshofer and DS 1206.0273] David Straub (JGU Mainz) 44