Unsaturated Hydrocarbons

Similar documents
Chem101 General Chemistry. Lecture 11 Unsaturated Hydrocarbons

Chapter 12: Unsaturated Hydrocarbons

Chapter 12 Alkenes and Alkynes

Organic Chemistry. Organic chemistry is the chemistry of compounds containing carbon.

HISTORY OF ORGANIC CHEMISTRY

Chapter 13 Alkenes and Alkynes & Aromatic Compounds

MODULE-16 HYDROCARBONS. Hydrocarbons can be classified according to the types of bonds between the carbon atoms:

Assignment - 3. Organic Chemistry

Organic Chemistry is the chemistry of compounds containing.

ExA1. Unsaturated Hydrocarbons. Olefins. Experiment: Next Week. Structure Addition Reactions Mechanisms

Chapter 22. Organic and Biological Molecules

Replace one H with a Br for every mole of Br 2

Unsaturated Hydrocarbons

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapters 2 & 25: Covalent bonds & Organic Chemistry

3. What number would be used to indicate the double bond position in the IUPAC name for CH 3 CH 2 CH=CH CH 3 a. 1 b. 2 c. 3 d.

Unsaturated hydrocarbons. Chapter 13

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16

UNIT (7) ORGANIC COMPOUNDS: HYDROCARBONS

Ch09. Alkenes & Alkynes. Unsaturated hydrocarbons. Double and triple bonds in our carbon backbone. version 1.0

Organic Chemistry. REACTIONS Grade 12 Physical Science Mrs KL Faling

FACTFILE: GCE CHEMISTRY

Chapter 20 (part 2) Organic Chemistry

Vision. Cis-trans isomerism is key to vision. How rods work H 3 C CH 3. Protein opsin. 11-cis-retinal. Opsin. Rhodopsin.

5.1 Alkene Nomenclature

HISTORY OF ORGANIC CHEMISTRY

Alkenes. Dr. Munther A. M-Ali For 1 st Stage Setudents

(1) Recall the classification system for substituted alkenes. (2) Look at the alkene indicated. Count the number of bonds to non-hydrogen groups.

Chem 145 Unsaturated hydrocarbons Alkynes

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Alkenes Boomer Publications

Organic Chemistry. Alkynes

15.1: Hydrocarbon Reactions

Chapter 11. Introduction to Organic Chemistry

1.3 Reactions of Hydrocarbons

Chem 121 Winter 2016: Section 03, Sample Problems. Alkenes and Alkynes

A. They all have a benzene ring structure in the molecule. B. They all have the same molecular formula. C. They all have carbon and hydrogen only

Alkenes. Alkenes are unsaturated aliphatic hydrocarbons.

Time Allowed: 60 minutes MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ORGANIC CHEMISTRY- 1

Organic Chemistry - Introduction

Hydrocarbons. Table Alkanes

Organic Chemistry. February 18, 2014

alkane molecular formula boiling point / C H 6 H 8 H [1] Explain why the boiling points increase down the alkane homologous series....

Introduction to Alkenes and Alkynes

Organic Chemistry Worksheets

Hydrogen iodide is a strong acid and will drive the reverse reaction, meaning the forward reaction will not occur.

Straight. C C bonds are sp 3 hybridized. Butane, C 4 H 10 H 3 C

AP Chemistry Chapter 22 - Organic and Biological Molecules

Chapter 13 Alkenes and Alkynes Based on Material Prepared by Andrea D. Leonard University of Louisiana at Lafayette

Organic Chemistry. Introduction to Organic Chemistry 01/03/2018. Organic Chemistry

video 14.1 introduction to organic chemistry

Objectives. Organic molecules. Carbon. Hydrocarbon Properties. Organic Chemistry Introduction. Organic versus Hydrocarbon 1/1/17

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 12 Alkenes & Alkynes.

Chemistry 110 Bettelheim, Brown, Campbell & Farrell Ninth Edition Introduction to General, Organic and Biochemistry Chapter 12 Alkenes & Alkynes

Reading: Chapter 4 Practice Problems: in text problems and 19 22, 24, 26, 27, 29, 30, 33 35, 39, 40.

CHAPTER 12: Unsaturated Hydrocarbons IMPORTANT COMMON NAMES: 12.1 NOMENCLATURE GEOMETRY of ALKENES. Page 12-1

Chemical Reactions of Unsaturated Compounds

BIOB111 - Tutorial activities for session 8

Alkenes and Alkynes 10/27/2010. Chapter 7. Alkenes and Alkynes. Alkenes and Alkynes

Question. Chapter 5 Structure and Preparation of Alkenes (C n H 2n ): Elimination Reactions

Chapter 3. Alkenes And Alkynes

Unit 7 Part 3 Introduction to Organic Chemistry Simple Reactions of Hydrocarbons UNIT 7 INTRODUCTION TO ORGANIC CHEMISTRY

Chemistry B11 Chapters Alkanes, Alkenes, Alkynes and Benzene

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Electronegativity Scale F > O > Cl, N > Br > C, H

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

Unit 7 Part 1 Introduction to Organic Chemistry Nomenclature and Isomerism in Simple Organic Compounds UNIT 7 INTRODUCTION TO ORGANIC CHEMISTRY

Experiment 5 Reactions of Hydrocarbons

CfE Chemistry. Nature s Chemistry. Alkanes, Alkenes and Cycloalkanes

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

4. Carbon and Its Compounds

Unit 12 Organic Chemistry

National 5 Chemistry. Unit 2: Nature s Chemistry. Topic 1 Hydrocarbons

Alkanes and Alkenes. The Alkanes

CHEMISTRY Practice Exam #1

Basic Organic Nomenclature Packet Chemistry Level II

Question Bank Organic Chemistry II

CHEMISTRY - TRO 4E CH.21 - ORGANIC CHEMISTRY.

12.01 Organic Chemistry

Chem!stry. Assignment on Alkanes and Alkenes H C H H H H H H C H

Chapter 9. Organic Chemistry: The Infinite Variety of Carbon Compounds. Organic Chemistry

H H C C. Alkenes C n H 2n unsaturated hydrocarbons. C 2 H 4 ethylene. Functional group = carbon-carbon double bond

Explain how the structure and bonding of carbon lead to the diversity and number of organic compounds.

ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes

Definition: A hydrocarbon is an organic compound which consists entirely of hydrogen and carbon.

Alkanes and Cycloalkanes

Chapter 9 Alkynes. Introduction

The carbon-carbon double bond is the distinguishing feature of alkenes.

Also called an olefin but alkene is better General formula C n H 2n (if one alkene present) Can act as weak nucleophiles

Firewood? Chapter 22. Formulas and Models for Methane and Ethane. One carbon atom can form a single covalent bond with four hydrogen atoms.

Introduction to Alkenes. Structure and Reactivity

UNIT 12 - TOPIC 1 ORGANIC HYDROCARBONS - REVIEW

Common Elements in Organic Compounds

Types of Covalent Bond

Farr High School. NATIONAL 5 CHEMISTRY Unit 2 Nature s Chemistry. Question Booklet (UPDATED MAY 2017)

Chapter 25 Organic and Biological Chemistry

Introduction to Organic Chemistry. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Unit 2 Nature s Chemistry Question Booklet

Transcription:

Interchapter G Unsaturated ydrocarbons The flame from an acetylene torch. Acetylene, which is used extensively in welding, is an example of an unsaturated hydrocarbon. University Science Books, 2011. All rights reserved. www.uscibooks.com

G. unsaturated ydrocarbons G1 In this Interchapter, we shall continue our introduction to organic chemistry by discussing unsaturated hydrocarbons. We shall see that unsaturated hydrocarbons contain double or triple bonds and are more reactive than saturated hydrocarbons. G-1. ydrocarbons That ontain Double Bonds Are alled Alkenes All the hydrocarbons that we discussed in Interchapter F are saturated hydrocarbons; that is, each carbon atom is bonded to four other atoms. There is another class of hydrocarbons called unsaturated hydrocarbons, in which not all the carbon atoms are bonded to four other atoms. These molecules necessarily contain double or triple bonds. The double bonds and triple bonds serve as functional groups. A functional group is a specifically bonded group of atoms in a molecule that confers characteristic reactive properties on the molecule. As we shall see, atoms with double and triple bonds tend to react similarly due to the presence of these functional groups. Unsaturated hydrocarbons that contain one or more double bonds are called alkenes. The systematic name of the simplest alkene, 2 4 (g), is ethene, although it is generally referred to by its common name, ethylene, as we shall do here. Ethylene is a colorless gas with a sweet odor and taste. It is highly flammable, and mixtures of ethylene and oxygen are highly explosive. Ethylene ranks third in U.S. annual production; some 25 million metric tons of ethylene are produced annually in the United States (Appendix ). This amounts to 85 kg (190 pounds) for every man, woman, and child in the United States. Ethylene is the starting material for about 40% of all organic substances produced commercially. It is used to make polyethylene, vinyl chloride, and polyvinyl chloride (PV), vinyl acetate and polyvinyl acetate, styrene, polyesters, refrigerants, and anesthetics. Ethylene acts as a hormone in plants and is used commercially to accelerate the ripening of fruit (Figure G.1). We learned in Section 9-10 that the bonding in ethylene can be described by sp 2 orbitals on each Figure G.1 Fruit being gassed with ethylene. Ethylene is a natural plant hormone that is used commercially to accelerate ripening. Fruit is often picked green, which prevents bruising during transport, and then gassed with ethylene to promote ripening before being placed on the supermarket shelf. carbon atom (Figure 9.32, page 291). The double bond consists of a σ bond and a p bond (Figure 9.34, page 292). The σ bond results from the combination of two sp 2 orbitals, one from each carbon atom; and the p bond results from the combination of two p orbitals, also one from each carbon atom. The p orbital maintains the σ-bond framework in a planar shape and prevents rotation about the double bond. onsequently, all six atoms in an ethene (ethylene) molecule lie in one plane, and there are cis and trans isomers of 1,2-dichloroethene (see Section 9-11). Ethene is often referred to by its common name, ethylene. ethene (ethylene) -1,2- dichloroethene cis-1,2-dichloroethene -1,2- dichloroethene trans-1,2-dichloroethene

G2 GENERAL EMISTRY, FOURT EDItION McQuarrie, Rock, and Gallogly propene -2- cis-2-butene The IUPA (International Union of Pure and Applied hemistry) nomenclature for alkenes uses the longest chain of consecutive carbon atoms containing the double bond to denote the parent compound. The parent compound is named by replacing the -ane ending of the corresponding alkane with -ene and using a number to designate the carbon atom preceding the double bond. Thus, we have ethene (ethylene) propene 3 In both cases the location of the double bond is between the number 1 and 2 carbons in the chain (giving precedence to the double bond) and so no number is required in the name; it would be incorrect (or at least unconventional) to write 1-propene. In contrast, there are two possible positions for the double bond in butene, so we have 3 4 1 2 2 3 1-butene 1 4 3 2 3 2-butene 3 The planar = portion of each of these molecules is colored red. Note that for 2-butene it is possible to draw two distinct structures due to cis-trans isomerism. The cis-trans isomers of 2 butene are 3 3 cis-2-butene (m.p. 139 ) 3 3 trans-2-butene (m.p. 106 ) cis isomer: longest carbon chain is on the same side of the double bond trans isomer: longest carbon chain runs across the double bond The name 2-butene is ambiguous because of cistrans isomerism, and so we must include a cis or trans prefix before the number designating the location of the double bond in the name in order to distinguish between the two cases. Recall that the cis prefix denotes that the longest carbon chain is located on the same side of the double bond (cis means same) and the trans prefix denotes that the longest carbon chain is located on opposite sides of the double bond (trans means across). The longest carbon chains are shown in red above. The distinction between the cis and trans isomers of 2-butene is readily apparent from their spacefilling structures in the margin. These two isomers have different physical and chemical properties. For example, the melting point of cis-2-butene is 139 and that of trans-2-butene is 106. Let s name the compound whose Lewis formula is 1 3 trans-2-butene 3 4 2 3 5 6 2 3 The longest chain containing the double bond consists of six carbon atoms, so the parent compound is a hexene. In particular, it is a 2-hexene because the double bond occurs after the second carbon atom in the chain. The configuration of the molecule is trans because the carbon atoms in the lon- University Science Books, 2011. All rights reserved. www.uscibooks.com

G. unsaturated ydrocarbons G3 gest chain lie on opposite sides of the double bond. In addition, there is a methyl group attached to the fourth carbon atom, so the name of the compound is 4-methyl-trans-2-hexene. Recall from Section 9-11 that a nice application of cis-trans isomerism is the conversion of the 11-cis-retinal portion of rhodopsin to 11-trans-retinal when a photon of light registers in the retina of the eye. This transition is sketched in Figure 9.36, page 294. G-2. Alkenes Undergo Addition Reactions as Well as ombustion Reactions and Substitution Reactions Alkenes are more reactive than alkanes because the carbon-carbon double bond provides a reactive center in the molecule. In a sense, the double bond has extra electrons available for reaction. So, besides the combustion and substitution reactions that alkanes undergo, alkenes undergo addition reactions. Examples of addition reactions are 1. Addition of hydrogen, called hydrogenation: constitute vegetable oils. This hydrogenation makes vegetable oils solid at room temperature. 2. Addition of chlorine or bromine: 3 (g) + Br 2 (l ) 3 (l ) Br Br This reaction can be carried out either with pure chlorine or bromine or by dissolving the halogen in some solvent, such as carbon tetrachloride. The addition reaction with bromine is a useful qualitative test for the presence of double bonds. A solution of bromine in carbon tetrachloride is red, whereas alkenes and bromoalkanes are usually colorless. As the bromine adds to the double bond, the red color disappears, a result providing a simple test for the presence of double bonds (Figure G.2). 3. Addition of a hydrogen halide, X, where X is a halogen: 3 catalyst (g) + 2 (g) high P, 3 (g) high T This reaction requires a catalyst and high pressure and temperature. Usually, powdered nickel or platinum is used as the catalyst. ydrogenated vegetable oils are made by hydrogenating the double bonds in the molecules that 3 (g) + X(g) 3 (g) X > 99% (major product) 3 (g) X < 1% produced Figure G.2 A solution of bromine in carbon tetrachloride is red. Solutions of alkenes and bromoalkanes are usually colorless. As the bromine adds to the double bond, the red color disappears, a result providing a simple test for the presence of double bonds.

G4 GENERAL EMISTRY, FOURT EDItION McQuarrie, Rock, and Gallogly Although two different products might seem possible in this reaction, only one is found in any significant amount. There is a simple rule for determining which product is produced: Markovnikov s rule states that when X adds to an alkene, the hydrogen atom attaches to the carbon atom in the double bond that is already directly bonded to the larger number of hydrogen atoms. More succinctly, the hydrogen-rich carbon atom gets hydrogen-richer. 4. Addition of water. In the presence of acid, which catalyzes the reaction, water adds to the more reactive alkenes: 3 acid (g) + O(l ) acid 3 2 (l ) O > 99% (major product) 3 2 O (l ) < 1% produced G-3. ydrocarbons That ontain a Triple Bond Are alled Alkynes Alkynes are hydrocarbons that contain at least one carbon carbon triple bond. The simplest alkyne is 2 2 (g). Its IUPA name, ethyne, is formed by replacing the -ane ending of the corresponding alkane with the ending -yne, which is characteristic of alkynes. Ethyne is generally referred to by its common name, acetylene, as we shall do here. We learned in Section 9-12 that acetylene is a linear molecule whose bonding can be described in terms of sp hybrid orbitals and two p-bonding orbitals on the carbon atoms (Figures 9.37 and 9.38). Acetylene is a colorless gas, which is produced primarily from petroleum. It is used in oxyacetylene torches, which produce relatively high temperatures. Acetylene also is used as the starting material for a number of plastics. Acetylene can also be produced by the reaction of calcium carbide and water described by a 2 (s) + 2 2 O(l ) a(o) 2 (s) + 2 2 (g) This reaction is sometimes used by spelunkers as a light source in caves (Figure G.3). Acetylene is Note that the addition of water to an alkene obeys Markovnikov s rule. Simply picture the water as O. The product of this reaction is an alcohol; we shall study alcohols in Interchapter P. Ethyne is generally referred to by its common name, acetylene. ethyne (acetylene) (a) Figure G.3 (a) hip ark, spelunker, with a calcium carbide lamp on his helmet. (b) The reaction of calcium carbide with water yields ethyne (acetylene) gas and calcium hydroxide. The acetylene gas burns in air and is used to provide light in lamps on hats used by spelunkers. (b) University Science Books, 2011. All rights reserved. www.uscibooks.com

G. unsaturated ydrocarbons G5 produced by allowing 2 O(l) to drop slowly onto a 2 (s) in a canister. The 2 2 (g) pressure builds up, leaks out of the canister through a nozzle, and is burned in air according to 2 2 2 (g) + 5 O 2 (air) 4 O 2 (g) + 2 2 O(g) Besides the combustion reaction that all hydrocarbons undergo, acetylene and other alkynes undergo the same type of addition reactions as alkenes do. For example, let s consider the product when (g) reacts with 2 2 (g). The reaction can be broken down into two steps. The first step is (g) + (g) The second step is (g) (g) + (g) (g) G-6. an the addition reaction of two 2 (g) molecules to an alkyne form cis-trans isomers? If so, give an example of such a compound. If not, explain why not. G-7. Explain why there is no molecule named 3-butene. G-8. Assign IUPA names to the following alkenes: F (a) 2 3 (c) 2 3 3 (b) 3 2 G-9. Write the Lewis formula for and assign an IUPA name to the product when each of the following compounds reacts with bromine: (a) 1-butene (b) 2-butene 3 G-10. omplete the following equations and name the products: 3 Note that we have used Markovnikov s rule to predict the product in the second step. The major product is 1,1-dichloroethane. (a) 2 3 (g) + (g) TERMS YOU SOULD KNOW unsaturated hydrocarbon G1 functional group G1 alkene G1 addition reaction G3 hydrogenation G3 Markovnikov s rule G4 alkyne G4 (b) 3 (g) + 2 (g) G-11. Assign IUPA names to the following alkynes: (a) 3 (b) 3 3 3 (c) 3 2 3 3 Questions G-1. What is meant by an unsaturated hydrocarbon? What exactly is unsaturated? G-2. What is the difference between a substitution reaction and an addition reaction? G-3. What is a hydrogenation reaction? What conditions are required for this reaction to occur? G-4. State Markovnikov s rule. G-5. What is the difference between an alkene and an alkyne? G-12. omplete and balance the following equations (assume complete saturation of the triple bonds): (a) 3 (g) + (g) (b) 3 (c) 3 (g) + Br 2 (l ) Ni(s) 3 (g) + 2 (g) G-13. Write the structural formula for and assign an IUPA name to the product when each of the following compounds reacts with 1-butene: (a) 2 (addition) (b) (c) 2 O (acid catalyst) (d) 2 (platinum catalyst)