Supporting Information. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed. NiOx Hole Contact

Similar documents
Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO x Hole Contacts

Supporting Information

High efficiency MAPbI3-xClx perovskite solar cell via interfacial passivation

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films

Supporting Infromation

Supporting Information

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Electronic Supplementary Information

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells

Electronic Supplementary information (ESI) for. High-Performance Electrothermal and Anticorrosive Transparent

Supporting Information

Supporting Information

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13%

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

Supporting Information

Electronic Supplementary Information

Supporting Information for

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite

Self-floating nanostructural Ni-NiO x /Ni foam for solar thermal water evaporation

Supporting Information

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery

Supporting Information

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

The Current Status of Perovskite Solar Cell Research at UCLA

Supporting information

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Review Article Perovskite Thin Film Solar Cells Based on Inorganic Hole Conducting Materials

Supplementary Information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Electronic Supplementary Information. Benjia Dou,, Vanessa L. Pool, Michael F. Toney *,, Maikel F.A.M. van Hest *,

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Supporting Information

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Supporting Information

Supporting information

Halide-Rich Synthesized Cesium Lead Bromide Perovskite Nanocrystals for Light-Emitting Diodes with Improved Performance

Growth of Nanosized Single Crystals for Efficient

Bimetallic Thin Film NiCo-NiCoO as Superior Bifunctional Electro- catalyst for Overall Water Splitting in Alkaline Media

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Supporting Information. Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes

All materials were purchased from Sigma-Aldrich unless specified otherwise. PCBA

Large-Area and Uniform Surface-Enhanced Raman. Saturation

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

bifunctional electrocatalyst for overall water splitting

Hierarchical Nanocomposite by Integrating Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO 2 Capture

Supporting Information

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

Electronic Supplementary Information

Supporting Information

Supporting Information

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

Supporting Information

Highly Stretchable and Transparent Thermistor Based on Self-Healing Double. Network Hydrogel

UV Degradation and Recovery of Perovskite Solar Cells

Supporting Information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Efficiency Enhancement in Polymer Solar Cell Using Solution-processed Vanadium Oxide Hole Transport Layer

Control carrier recombination of multi-scale textured black silicon surface for high performance solar cells

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Supporting Information

Supporting Information

Synergistic Improvements in Stability and Performance of Lead Iodide Perovskite Solar Cells Incorporating Salt Additives

Electronic Supplementary Information

Inexpensive Colloidal SnSb Nanoalloys as Efficient Anode Materials for Lithium- and Sodium-Ion Batteries

SUPPLEMENTARY INFORMATION

Supporting Information. Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

DISTRIBUTION A: Distribution approved for public release.

Supporting Information

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Supporting Information

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution

Supporting Information

An Advanced Anode Material for Sodium Ion. Batteries

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells

Supplementary Materials for

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Solvent-Assisted Thermal-Pressure Strategy for. as High-Performance Perovskite Photodetectors

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Tuning the Shell Number of Multi-Shelled Metal Oxide. Hollow Fibers for Optimized Lithium Ion Storage

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction

Supporting Information

Efficient removal of typical dye and Cr(VI) reduction using N-doped

Transcription:

Supporting Information High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact Xuewen Yin, Zhibo Yao, Qiang Luo, Xuezeng Dai, Yu Zhou, Ye Zhang, Yangying Zhou, Songping Luo, Jianbao Li,, Ning Wang,*, and Hong Lin*, State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China State Key Laboratory of Marine Resource Utilization in South China Sea, Materials and Chemical Engineering Institute, Hainan University, Haikou 570228, P. R. China *Corresponding E-mail: hong-lin@mail.tsinghua.edu.cn; wangninguestc@gmail.com S-1

Figure S1. Cross-sectional SEM images of the devices with different concentration perovskite precursors (1.25 M (a), 1.35 M (b), 1.45 M (c) and1.50 M (d), respectively.) (Blue vertical lines represent thicknesses of perovskite layers) S-2

Figure S2. The charge-transfer resistance obtained by EIS in figure 5b (Rct) as thickness of perovskite. S-3

Figure S3. Cross-sectional SEM images of NiOx films fabricated by spin-coating different times on FTO: 1 time (a), 2 times (b), 3 times (c) and 4 times (d), respectively. (Blue vertical lines represent thicknesses of NiOx films) Figure S4. SEM images of NiOx films fabricated by spin-coating different times on FTO: 1 time (a), 2 times (b), 3 times (c) and 4 times (d), respectively. S-4

Figure S5. Normalized PL spectra of the devices with different NiOx precursor spincoating times S-5

Figure S6. Jsc (a), Voc (b), FF (c) and PCE(d) distributions as the concentration of PCBM. S-6

Figure S7. XRD pattern of solar cell stored in air for 1500 h. S-7

Figure S8. Secondary electron image and Auger analysis of solar cell stored in air for 1500 h. S-8

Figure S9. Cross-sectional SEM and element of I mapping for fresh solar cell (a, b) and solar cell stored in air for 1500h (c, d) S-9

Table S1. The dynamic decay time parameter of the devices with different concentration perovskite precursors Decay τ1(ns) τ2(ns) 1.25 M 2.40 30.35 1.35 M 3.63 36.79 1.45 M 3.67 37.75 1.50 M 3.47 40.41 Table S2. The dynamic decay time parameter of the devices with spin-coating different times NiOx precursor Decay τ1(ns) τ2(ns) perovskite 2.16 41.35 1 time 1.61 37.12 2 times 1.82 32.85 3 times 1.94 34.98 4 times 1.92 40.37 S-10

Table S3 Summary on the performances and preparation methods of NiOx-based organic-inorganic hybrid perovskite solar cells and our devices are also included for comparison. The word non means the parameter was not presented in the paper. Device configuration Voc (V) Jsc (ma/cm 2 ) S-11 FF (%) PCE (%) Area (cm 2 ) Method/temperature Referen ce ITO/PLD-NiO/ CH3NH3PbI3/PCBM/LiF/Al 1.06 20.2 81.3 17.3 Non PLD/200 C 1 ITO/ALD-NiO/ CH3NH3PbI3/PCBM/Ag 1.04 21.87 72 16.40 0.14 ALD/300 C 2 ITO/Cu:NiO/ CH3NH3PbI3/Bis-C60/C60/Ag 1.05 21.60 77 17.8 0.0314 Combustion/150 C 3 ITO/ Cu:NiO / MA0.7FA0.3Pb(I0.1Br0.9)3 /PC61BM:C60(1:1)/Bis-C60/Ag 1.10 20.21 78 17.34 Non Spin-coating/550 C 4 ITO/NiOx/ CH3NH3PbI3 /PCBM/ Ag 1.07 20.58 74.8 16.47 0.07 Spin-coating/130 C 5 FTO/NiMgLiO/ CH3NH3PbI3/PCBM/Ti(Nb)Ox/Ag 1.072 20.62 74.8 16.2 1.02 Spray pyrolysis/500 C 6 FTO/NiO/DEA/ CH3NH3PbI3 xclx /PCBM/PN4N/Ag 0.95 20.90 80 15.90 Non Spin-coating/500 C 7 FTO/ NiOx / CH3NH3PbI3/PCBM /Ag 0.988 20.51 77.51 15.71 0.06 Spin-coating/350 C This Work FTO/NiO/ CH3NH3PbI3/PCBM/Ag 1.08 14.13 58 8.73 Non FTO/Cu:NiO/ CH3NH3PbI3/PCBM/Ag 1.11 18.75 72 15.40 Non Spin-coating/550 C 8 FTO/NiOx/ CH3NH3PbI3/PCBM/Ag 1.09 17.93 73.8 14.42 0.07 Spin-coating/500 C 9 FTO/NiO/NiO (np)/ CH3NH3PbI3/PCBM/BCP/Al 1.01 22.1 61.6 13.7 Non Sputtering 10 FTO/NiO/Meso-Al2O3/ CH3NH3PbI3/PCBM/BCP/Ag 1.04 18.0 72 13.5 0.09 Spray pyrolysis/ 500 C 11 glass/au:niox (e-beam evaporator)/ E-beam 1.02 13.04 77 10.24 Non CH3NH3PbI3/C60 /BCP/Al evaporator/500 C 12 ITO/NiOx/ CH3NH3PbI3/PCBM/Ag 1.02 20.0 63 12.7 0.14 Spin-coating/300 C 13

ITO/ NiO/meso-NiO/ CH3NH3PbI3/BCP/Al 0.96 19.8 61 11.6 Non Sputtering + spin coating/ 400 C 14 FTO/ NiO NCs/ CH3NH3PbI3 xclx /PCBM (1.5 wt% PS)/Al 1.07 15.62 64 10.68 Non Spin-coating/500 C 15 FTO/NiO/ CH3NH3PbI3/PCBM/Ag 1.10 15.17 59 9.84 Non Sputtering/ No heated 16 ITO/NiO/meso-NiO/ CH3NH3PbI3/BCP/Al 1.04 13.24 69 9.51 0.06 Spin-coating/400 C 17 FTO/NiO NCs/CH3NH3PbI3/PCBM/Au 0.882 16.27 63.5 9.11 Non Spin-coating/500 C 18 ITO/NiO/ CH3NH3PbI3 xclx /PCBM/BCP/Al 0.92 12.43 68 7.8 0.06 Spun-cast/ 300 C 19 ITO/NiO/ CH3NH3PbI3/PCBM/Al 1.05 15.4 48 7.6 0.0725 Spin-coating/350 C 20 FTO/NiO /CH3NH3PbI3 xclx /PCBM/Ag 0.786 14.2 65 7.26 0.07 Electrodeposited/ 350 C 21 FTO/ NiOx/ CH3NH3PbI3 xclx /PCBM/Au 0.798 18.23 47 6.4 Non Spin-coating/340 C 22 S-12

References: 1. Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H.; Ahn, T. K.; Noh, J. H.; Yoon, S. C.; Hwang, C. S.; Seok, S. I., Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured P-Type NiO Electrode Formed by a Pulsed Laser Deposition. Adv. Mater. 2015, 27, 4013-4019. 2. Seo, S.; Park, I. J.; Kim, M.; Lee, S.; Bae, C.; Jung, H. S.; Park, N. G.; Kim, J. Y.; Shin, H., An Ultra-Thin, Un-Doped NiO Hole Transporting Layer of Highly Efficient (16.4%) Organic-Inorganic Hybrid Perovskite Solar Cells. Nanoscale 2016, 8, 11403-11412. 3. Jung, J. W.; Chueh, C.; Jen, A. K. Y., A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Adv. Mater. 2015, 27, 7874-7880. 4. Yang, Z.; Chueh, C.; Liang, P.; Crump, M.; Lin, F.; Zhu, Z.; Jen, A. K. Y., Effects of Formamidinium and Bromide Ion Substitution in Methylammonium Lead Triiodide Toward High-Performance Perovskite Solar Cells. Nano Energy 2016, 22,328-337. 5. Yin, X.; Chen, P.; Que, M.; Xing, Y.; Que, W.; Niu, C.; Shao, J., Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts. ACS Nano 2016, 10, 3630-3636. 6. Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Gratzel, M.; Han, L., Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers. Science 2015, 350, 944-948. 7. Bai, Y.; Chen, H.; Xiao, S.; Xue, Q.; Zhang, T.; Zhu, Z.; Li, Q.; Hu, C.; Yang, Y.; Hu, Z.; Huang, F.; Wong, K. S.; Yip, H.; Yang, S., Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact Toward Faster S-13

Hole Extraction and Higher Photovoltaic Performance. Adv. Funct. Mater. 2016, 26, 2950-2958. 8. Kim, J. H.; Liang, P.; Williams, S. T.; Cho, N.; Chueh, C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y., High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer. Adv. Mater. 2015, 27, 695-701. 9. Yin, X.; Que, M.; Xing, Y.; Que, W., High Efficiency Hysteresis-Less Inverted Planar Heterojunction Perovskite Solar Cells with a Solution- Derived NiOx Hole Contact Layer. J. Mater. Chem. A 2015, 3, 24495-24503. 10. Corani, A.; Li, M.; Shen, P.; Chen, P.; Guo, T.; El Nahhas, A.; Zheng, K.; Yartsev, A.; Sundström, V.; Ponseca, C. S., Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using Nickel Oxide as P-Type Contact Electrode. J. Phys. Chem. Lett. 2016, 1096-1101. 11. Chen, W.; Wu, Y.; Liu, J.; Qin, C.; Yang, X.; Islam, A.; Cheng, Y.; Han, L., Hybrid Interfacial Layer Leads to Solid Performance Improvement of Inverted Perovskite Solar Cells. Energ. Environ. Sci.2015, 8, 629-640. 12. Lai, W.; Lin, K.; Wang, Y.; Chiang, T.; Chen, P.; Guo, T., Oxidized Ni/Au Transparent Electrode in Efficient CH3NH3PbI3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. Adv. Mater.2016, 28, 3290-3297. 13. Park, I. J.; Park, M. A.; Kim, D. H.; Park, G. D.; Kim, B. J.; Son, H. J.; Ko, M. J.; Lee, D.; Park, T.; Shin, H.; Park, N.; Jung, H. S.; Kim, J. Y., New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p-i-n Geometry. J. Phys. Chem. C 2015, 119, 27285-27290. 14. Wang, K.; Shen, P.; Li, M.; Chen, S.; Lin, M.; Chen, P.; Guo, T., Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/ CH3NH3PbI3 Perovskite Heterojunction Solar Cells. ACS Appl. Mater. Inter. 2014, 6, 11851-11858. S-14

15. Bai, Y.; Yu, H.; Zhu, Z.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S.; Yan, H., High Performance Inverted Structure Perovskite Solar Cells Based on a PCBM: Polystyrene Blend Electron Transport Layer. J. Mater. Chem. A 2015, 3, 9098-9102. 16. Cui, J.; Meng, F.; Zhang, H.; Cao, K.; Yuan, H.; Cheng, Y.; Huang, F.; Wang, M., CH3NH3PbI3 -Based Planar Solar Cells with Magnetron- Sputtered Nickel Oxide. ACS Appl. Mater. Inter. 2014, 6, 22862-22870. 17. Wang, K.; Jeng, J.; Shen, P.; Chang, Y.; Diau, E. W.; Tsai, C.; Chao, T.; Hsu, H.; Lin, P.; Chen, P.; Guo, T.; Wen, T., P-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Sci. Rep.-UK 2014, 4,4756-4756. 18. Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.; Yang, S., High-Performance Hole-Extraction Layer of Sol-Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angew. Chem. Int. Edit. 2014, 53, 12571-12575. 19. Jeng, J.; Chen, K.; Chiang, T.; Lin, P.; Tsai, T.; Chang, Y.; Guo, T.; Chen, P.; Wen, T.; Hsu, Y., Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2014, 26, 4107-4113. 20. Hu, L.; Peng, J.; Wang, W.; Xia, Z.; Yuan, J.; Lu, J.; Huang, X.; Ma, W.; Song, H.; Chen, W.; Cheng, Y.; Tang, J., Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells. ACS Photonics 2014, 1, 547-553. 21. Subbiah, A. S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S. K., Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1748-1753. 22. Li, E.; Guo, Y.; Liu, T.; Hu, W.; Wang, N.; He, H.; Lin, H., Preheating-Assisted Deposition of Solution-Processed Perovskite Layer for an Efficiency-Improved Inverted Planar Composite Heterojunction Solar Cell. RSC Adv. 2016, 6, 30978-30985. S-15