Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

Similar documents
Part 5: Quantum Effects in MOS Devices

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Dept. of Materials Science and Engineering. Electrical Properties Of Materials

Lecture 12: MOSFET Devices

EE105 - Fall 2006 Microelectronic Devices and Circuits

Section 12: Intro to Devices

EE 560 MOS TRANSISTOR THEORY

Lecture 04 Review of MOSFET

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 3: CMOS Transistor Theory

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

FIELD-EFFECT TRANSISTORS

ECE-305: Fall 2017 MOS Capacitors and Transistors

Practice 3: Semiconductors

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Electrical Characteristics of MOS Devices

EE105 - Fall 2005 Microelectronic Devices and Circuits

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

Lecture 12: MOS Capacitors, transistors. Context

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

MOSFET: Introduction

MOS Transistor Properties Review

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

+ V gate M O. Trend: As k, E g. Part 6: High Dielectric Constant (k), Gate Electrode, & Channel Materials. Bandgap versus Dielectric Constant (k) k k

Extensive reading materials on reserve, including

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture 11: MOS Transistor

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

The Devices: MOS Transistors

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

Lecture 4: CMOS Transistor Theory

ECE 340 Lecture 39 : MOS Capacitor II

Integrated Circuits & Systems

Choice of V t and Gate Doping Type

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

MOS Transistor I-V Characteristics and Parasitics

ECE 342 Electronic Circuits. 3. MOS Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

High Dielectric Constant (k) Materials

Microelectronics Part 1: Main CMOS circuits design rules

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

Semiconductor Integrated Process Design (MS 635)

MENA9510 characterization course: Capacitance-voltage (CV) measurements

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

EECS130 Integrated Circuit Devices

Semiconductor Physics Problems 2015

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Semiconductor Physics fall 2012 problems

Classification of Solids

JFET/MESFET. JFET: small gate current (reverse leakage of the gate-to-channel junction) More gate leakage than MOSFET, less than bipolar.

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

6.012 Electronic Devices and Circuits

ECE 305: Fall MOSFET Energy Bands

MOS Transistor Theory

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

The Intrinsic Silicon

Device Models (PN Diode, MOSFET )

an introduction to Semiconductor Devices

Lecture 5: CMOS Transistor Theory

The Physical Structure (NMOS)

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

MOS Transistor Theory

Device Models (PN Diode, MOSFET )

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

MOS CAPACITOR AND MOSFET

Section 12: Intro to Devices

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Lecture 6: 2D FET Electrostatics

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

EE5311- Digital IC Design

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

Homework Assignment No. 1 - Solutions

ECE 546 Lecture 10 MOS Transistors

The Gradual Channel Approximation for the MOSFET:

V t vs. N A at Various T ox

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Introduction and Background

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

Metal-oxide-semiconductor field effect transistors (2 lectures)

Lecture 22 Field-Effect Devices: The MOS Capacitor

6.012 Electronic Devices and Circuits

Transcription:

MOS Device Uses: Part 4: Heterojunctions - MOS Devices MOSCAP capacitor: storing charge, charge-coupled device (CCD), etc. MOSFET transistor: switch, current amplifier, dynamic random access memory (DRAM-volatile), NVM (non-volatile memory), etc. Present day Challenges - Ultrathin : begin to observe quantum effects M O S poly-crystalline Si V Source W Source Contact Insulator n + source + V gate n ++ Poly Si Gate Contact or Electrode - Gate oxide - - - - - - - - - - - - - - channel p-si Wafer Drain Contact Insulator n + drain V Drain + Crystalline Si L t ox C ox o ra okoxa t t ox ox 1 MOSFET Current Voltage Characteristics I D (ma) I DS (ma) 10 V DS(sat) V GS =10V 10 V DS =20V Saturation, I D I DS 8V 5 5 6V V th =4V 5V 4V 0 0 0 10 20 30 0 5 10 V DS V GS Kasap, Fig. 6.38, p. 538 (a) (b) (a) Typical I D vs V DS characteristics of an enhancement MOSFET (Vth = 4 V) for various fixed gate voltages V GS. (b) Dependence of I D on V GS at a given V DS (>V DS(sat)). 2 W V DS ID Cox VGS VT VDS ; (+ = nmos; - = pmos) L 2 W I 2 Dsat Cox VGS VT ; (+ = nmos; - = pmos) 2L Fig. From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap ( McGraw-Hill, 2005) 2 1

m < sc Heterojunctions - MOS M O S ac M O S E c m sc sc E f,m ev FB p-si Ef,s/c E f,m E f,s/c Φ s band bending in Si p-si ev ox band bending in oxide Flat band ev FB ev ox Φ s Equilibrium Depletion Regime 3 m > sc Heterojunctions - MOS M O S M O S sio2 ac ev ox band bending in oxide m sc sc ev FB E f,m M p-si Φ s band bending in Si E f,s/c E E Ef,m g f,s/c p-si Flat band ev FB ev ox Φ s Equilibrium Accumulation Regime 4 2

Heterojunctions E m < sc MOSCAP e- M O S M O S M O S Eg Inversion E f,s/c Accumulation Φ s band bending in Si Φ s band bending in Si qv A qv Eg A E E f,s/c qv c E Φ A f,m s band bending in E f,s/c Si p-si p-si ev ox band p-si ev ox band bending in bending in Very strong accumulation 5 Heterojunctions -MOS Neaman, Semiconductor Devices 6 3

Heterojunctions m < sc MOSCAP qv A qv A Depletion Accumulation Very strong accumulation 7 Heterojunctions MOSCAP 8 4

m < sc q SiO2 q m q Si q Si q F Depletion Depletion 9 q SiO2 q m q Si q Si At Si/ p=n So: E f = E i qv A =q V G q s [ ] s = surface potential depletion q F NOTE: Flat Band: q F E i E f q F At Flat Band, no Surface Potential, q s, exists. But, when E f coincides with E i at the interface, then q F = q s F kt q N ln n D opant i q F s = F onset of inversion 10 5

Assume: m < sc or S Oxide S/C F F F E i F F E f & E A F 1 Colinge & Colinge, Physics of Semiconductor Devices (Kluwer Academic Publishers, 2002 ) p. 178-179, 182-183 11 qv G At Si/ E f = E i q F s = F Colinge & Colinge, Physics of Semiconductor Devices (Kluwer Academic Publishers, 2002 ) s = F = ms V ox + V G F kt N ln q n i A onset of inversion V G = s ms + V ox = F ms + V ox 12 6

[1] [1] One might think that the definition for the threshold of inversion should be the onset of inversion BUT IT IS NOT. There are varying opinions on this! Onset of strong inversion: S = F Threshold of inversion 2,6, Onset of strong inversion 3 or Onset of strong inversion 1,2,4,5 : S = 2 F When: S = 2 F, V g =V T s = 2 F = ms V ox + V T kt A F ln V G = s ms + V ox = 2 F ms + V q n ox i N 1 Colinge & Colinge, Physics of Semiconductor Devices (Kluwer Academic Publishers, 2002 ) p. 178-179, 182-183 2 Anderson & Anderson, Fundamentals of Semiconductor Devices, (McGraw Hill, 2005) p. 394 3 Muller & Kamins, Device Electronics for Integrated Circuits, 3 rd Ed. (Wiley, 2003) p. 390-392 4 Streetman & Banerjee, Solid State Electronic Devices, 5 th Ed (Prentice Hall, 2000) p.263-275 5 Taur & Ning, Fundamentals of Modern VLSI Devices, (Cambridge, ) p..58-74; 6 Kasap, Prin. Of Electronic Materials & Devices 3 rd Ed (McGraw Hill,, 2006) p. 540 13 O S Assume: m < sc E D E i E A & E f F F 2 F Flatband Depletion At Si/ At Si/ At Si/ E f = E i E f > E D n=p [1] onset of inversion S = F E f = E D n=n A threshold of Inversion Or Onset of Strong Inversion S = 2 F strong inversion 14 7

Threshold Voltage: V t V T,start : modeled by MEDICI, a TCAD program V T,2 F : V T at 2 F V T,extrapol : extrapolated V T D. Schroder, Semiconductor Material & Device Characterization 2rd Ed (Wiley Interscience, 1998) p. 242 15 [1] [4] [3] [5] 1 Colinge & Colinge, Physics of Semiconductor Devices (Kluwer Academic Publishers, 2002 ) p. 178-179, 182-183 2 Anderson & Anderson, Fundamentals of Semiconductor Devices, (McGraw Hill, 2005) p. 394 3 Muller & Kamins, Device Electronics for Integrated Circuits, 3 rd Ed. (Wiley, 2003) p. 390-392 4 Streetman & Banerjee, Solid State Electronic Devices, 5 th Ed (Prentice Hall, 2000) p.263-275 5 Taur & Ning, Fundamentals of Modern VLSI Devices, (Cambridge, ) p..58-74 Something is important when: S = 2 F Inversion takes over depletion & E f =E D 16 8

Degenerate E f is in the CB Degenerate E f is in the VB 0Φ F 2Φ F 1Φ F V FB V T 5 Taur & Ning, Fundamentals of Modern VLSI Devices, (Cambridge, ) p..58-74 Something is important when: S = 2 F Inversion takes over depletion & E f =E D 17 Capacitance Voltage: Q C V or Q [5] [4] E i V T [1] 1 Colinge & Colinge, Physics of Semiconductor Devices (Kluwer Academic Publishers, 2002 ) p. 178-179, 182-183 2 Anderson & Anderson, Fundamentals of Semiconductor Devices, (McGraw Hill, 2005) p. 394 3 Muller & Kamins, Device Electronics for Integrated Circuits, 3 rd Ed. (Wiley, 2003) p. 390-392 4 Streetman & Banerjee, Solid State Electronic Devices, 5 th Ed (Prentice Hall, 2000) p.263-275 5 Taur & Ning, Fundamentals of Modern VLSI Devices, (Cambridge, ) p..58-74 18 9

Capacitance Voltage: Q C V or Q 0Φ F 1Φ F 2Φ F [4] E i V T 4 Streetman & Banerjee, Solid State Electronic Devices, 5 th Ed (Prentice Hall, 2000) p.263-275 19 V A = V G V A At Si/ E f = E i At Si/ E f >> E i depletion onset of inversion strong inversion 20 10

Heterojunctions MOSCAP 21 Heterojunctions Drain (V+) e - Gate e - e- Source (V-) e - e - MOSFET 22 11

MOSFET Current Voltage Characteristics I D (ma) I DS (ma) 10 V DS(sat) V GS =10V 10 V DS =20V Saturation, I D I DS 8V 5 5 6V V th =4V 5V 4V 0 0 0 10 20 30 0 5 10 V DS V GS Kasap, Fig. 6.38, p. 538 (a) (b) (a) Typical I D vs V DS characteristics of an enhancement MOSFET (Vth = 4 V) for various fixed gate voltages V GS. (b) Dependence of I D on V GS at a given V DS (>V DS(sat)). 2 W V DS ID Cox VGS VT VDS ; (+ = nmos; - = pmos) L 2 W I 2 Dsat Cox VGS VT ; (+ = nmos; - = pmos) 2L Fig. From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap ( McGraw-Hill, 2005) 23 Heterojunctions MOSCAP depletion Neaman, Semiconductor Devices 24 12