Generalized q-integrals via neutrices: Application to the q-beta function

Similar documents
Chapter I Vector Analysis

6.6 The Marquardt Algorithm

The Number of Rows which Equal Certain Row

Lecture 5 Single factor design and analysis

PHYS 2421 Fields and Waves

IMA Preprint Series # 2202

The Shape of the Pair Distribution Function.

Two Coefficients of the Dyson Product

ON THE FRESNEL SINE INTEGRAL AND THE CONVOLUTION

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

GENERALIZATION OF AN IDENTITY INVOLVING THE GENERALIZED FIBONACCI NUMBERS AND ITS APPLICATIONS

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

8 Baire Category Theorem and Uniform Boundedness

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS

A Family of Multivariate Abel Series Distributions. of Order k

Groupoid and Topological Quotient Group

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Lecture 4: Piecewise Cubic Interpolation

The Schur-Cohn Algorithm

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

P 365. r r r )...(1 365

COMP 465: Data Mining More on PageRank

EN2210: Continuum Mechanics. Homework 4: Balance laws, work and energy, virtual work Due 12:00 noon Friday February 4th

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Remember: Project Proposals are due April 11.

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

Uniform Circular Motion

Chapter Linear Regression

E-Companion: Mathematical Proofs

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

Set of square-integrable function 2 L : function space F

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes

Integrals and Polygamma Representations for Binomial Sums

Chapter Fifiteen. Surfaces Revisited

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

This immediately suggests an inverse-square law for a "piece" of current along the line.

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c

Least squares. Václav Hlaváč. Czech Technical University in Prague

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

6 Roots of Equations: Open Methods

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

24-2: Electric Potential Energy. 24-1: What is physics

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

About Some Inequalities for Isotonic Linear Functionals and Applications

Effects of polarization on the reflected wave

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

Week 8. Topic 2 Properties of Logarithms

A. Thicknesses and Densities

FI 2201 Electromagnetism

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Ranks of quotients, remainders and p-adic digits of matrices

Statistics and Probability Letters

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

A. Proofs for learning guarantees

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

UNIT10 PLANE OF REGRESSION

Topics for Review for Final Exam in Calculus 16A

Data Structures. Element Uniqueness Problem. Hash Tables. Example. Hash Tables. Dana Shapira. 19 x 1. ) h(x 4. ) h(x 2. ) h(x 3. h(x 1. x 4. x 2.

MAT 578 Functional Analysis

Spinor Geometry Based Robots Spatial Rotations Terminal Control

3.1 Magnetic Fields. Oersted and Ampere

Principle Component Analysis

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

Lecture 9-3/8/10-14 Spatial Description and Transformation

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

THE ISOMORPHISM PROBLEM FOR CAYLEY GRAPHS ON THE GENERALIZED DICYCLIC GROUP

Lecture 3: Probability Distributions

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Rigid Bodies: Equivalent Systems of Forces

On Natural Partial Orders of IC-Abundant Semigroups

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

APPENDIX A Some Linear Algebra

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

Electronic Companion for Optimal Design of Co-Productive Services: Interaction and Work Allocation

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

8. INVERSE Z-TRANSFORM

Generalisation on the Zeros of a Family of Complex Polynomials

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ

The Formulas of Vector Calculus John Cullinan

Numbers Related to Bernoulli-Goss Numbers

q-bernstein polynomials and Bézier curves

Collection of Formulas

Angular Momentum in Spherical Symmetry

Links in edge-colored graphs

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

Lecture 10. Solution of Nonlinear Equations - II

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache


Transcription:

Flomt 7:8 3), 473 483 DOI.98/FIL38473S Publshed by Fculty of Scences nd Mthemtcs, Unvesty of Nš, Seb Avlble t: http://www.pmf.n.c.s/flomt Genelzed q-ntegls v neutces: Applcton to the q-bet functon Ahmed Slem Deptment of Bsc Scence, Fculty of Infomton Systems & Compute Scence, Octobe 6 Unvesty, S of Octobe Cty, Gz, Egypt Abstct. Let f ) be contnuous functon defned on the ntevl [, ]. In ths wo, we pply the neut lmt to genelze the q-ntegl α ln f )d q, N fo ll vlues of α R. We use ou esults to etend the defnton of the q-bet functon B q, b) nd ts devtves fo ll vlues of b nd,,,. Some esults fo the q-gmm functon e deved.. Intoducton Neutces e ddtve goups of neglgble functons tht do not contn ny constnts ecept zeo. The clculus ws developed by vn de Coput [] nd Hdmd n connecton wth symptotc sees nd dvegent ntegls. Recently, the concepts of neut nd neut lmt hve been used wdely n mny pplctons n mthemtcs, physcs nd sttstcs. The technque of neglectng ppoptely defned nfnte qunttes ws devsed by Hdmd nd the esultng fnte vlue etcted fom the dvegent ntegl s usully efeed to s the Hdmd fnte pt. Fshe gve genel pncples fo the dscdng of unwnted nfnte qunttes fom symptotc epnsons nd ths hs been eploted n the contet of dstbutons, ptcully n connecton wth the composton of dstbutons, the poduct nd the convoluton poduct of dstbutons; see [ 4]. Fshe et l. [5 8] used neutces to defne some of the specl functon see lso [9 ]). Ng nd vn Dm [, 3] ppled the neut clculus, n conjuncton wth the Hdmd ntegl, developed by vn de Coput, to quntum feld theoes, n ptcul, to obtn fnte esults fo the coeffcents n the petubton sees. They lso ppled neut clculus to quntum feld theoy, obtnng fnte enomlzton n the loop clcultons. In the second hlf of the twenteth centuy thee ws sgnfcnt ncese of ctvty n the e of the q-clculus due to pplctons of the q-clculus n mthemtcs, sttstcs nd physcs. Thee e mny of q-specl functons hve q-ntegl epesenttons q-gmm, q-bet, ncomplete q-gmm, q-bessel,...etc). The q-ntegl epesenttons hve bounded domn of convegence nd they e dvegent outsde ths domn. Bette yet, we should loo fo mthemtcl tool tht cn hndle the domn of convegence. Slem [4, 5] hs suggested tht such tool s ledy vlble n the neut clculus developed by vn Mthemtcs Subject Clssfcton. Pmy 33D5; Secondy 46F Keywods. q-ntegls; neutces; neut lmt; q-gmm functon; q-bet functon Receved: 3 Jnuy 3; Revsed: June 3; Accepted: 5 June 3 Communcted by Ljubš D.R. Kočnc Eml ddess: hmedslem74@hotml.com Ahmed Slem)

A. Slem / Flomt 7:8 3), 473 483 474 de Coput []. He ppled the neut lmt to etend the defntons of the q-gmm nd the ncomplete q-gmm functons nd the devtves to negtve ntege vlues. Contnuton on the sme mnne, Ege nd Yýldýým [6] used the neut nd the neut lmt to obtn some equltes of the q-gmm functon fo ll el vlues of. In ths wo we pply the neut lmt to genelze q-ntegls α ln f )d q N.) fo ll vlues of α, whee f ) s contnuous functon defned on the ntevl [, ].. Pelmnes nd nottons Fo the convenence of the ede, we povde n ths secton summy of the mthemtcl nottons nd defntons used n ths ppe. Thoughout of ths wo, q s postve numbe, < q < nd the defntons of q-clculus wll be ten fom the well nown boos n ths feld [7, 8]. Defnton.. Notton n q-clculus): Fo ny comple numbe, we defne [] q q q, q ; [n] q! [n] q [n ] q [] q [] q, n N.) wth [] q! nd the q-shfted fctols e defned s n ; q), ; q) n q ), n N..) The lmt, lm n ; q) n, s denoted by ; q). The eponentl functon e hs mny dffeent q-etensons, one of them s defned s E q ) q n ) n q); q)..3) Let f be functon defned on subset of el o comple plne. The q-dffeence opeto s defned by the fomul f ) f q) D q f )),, nd D q f )) f ).4) q) povded f s dffeentble t ogn. The bove opeto s now sometmes efeed to s Eule-Jcson, Jcson q-dffeence opeto o smply the q-devtve. The q-ntegton of Jcson s defned fo functon f defned on genec ntevl [, b] to be whee f )d q f )d q f )d q q) povded the sum conveges bsolutely. The q-ntegtng by pts s gven fo sutble functons f nd by f )d q,.5) f q n )q n,.6) f )D q )d q f b) b) f ) ) q)d q f )d q..7) We cll the functon f s q-ntegble on the genec ntevl [, ] f the sees q n f q n ) conveges bsolutely.

A. Slem / Flomt 7:8 3), 473 483 475 Defnton.. The q-tylo sees): Let f ) be contnuous functon on some ntevl [, b] nd c, b). Jcson ntoduced the followng q-countept of Tylo sees f ) whee [ c] n n cq ) nd [ c]. [ c] n D n q f c),, b).8) Rjovc et l. [9] poved tht f f ) s contnuous functon on [, b] nd c, b), then thee ests ˆq, ) such tht fo ll q ˆq, ), ξ, b) cn be found between c nd, whch stsfes f ) n [ c] [] q! Moeove, f c, we hve fo ll q, ) thee ests ξ, ) such tht f ) n D q f c) + [ c] n D q f ξ).9) [] q! D q f ) + n D q f ξ).) Defnton.3. Neut): A neut N s defned s commuttve ddtve goup of functons f ξ) defned on domn N wth vlues n n ddtve goup N, whee futhe f fo some f n N, f ξ) γ fo ll ξ N, then γ. The functons n N e clled neglgble functons. Defnton.4. Neut lmt): Let N be set contned n topologcl spce wth lmt pont whch does not belong to N. If f ξ) s functon defned on N wth vlues n N nd t s possble to fnd constnt c such tht f ξ) c N, then c s clled the neut lmt of f s ξ tends to nd we wte N lm ξ f ξ) c. In ths ppe, we let N be the neut hvng domn N { : < < } nd nge N the el numbes, wth the neglgble functons beng fnte lne sums of the functons λ ln, ln λ <, N). nd ll functons o) whch convege to zeo n the noml sense s tends to zeo []. 3. Genelzed q-ntegls Begn ths secton by the followng lemms, whch help to pove ou esults. Lemm 3.. [4]) Fo ll, b nd ll vlues of α, we hve α ln d q fo N nd when, we hve q )ln + b ln + ) + ) ln q b α ln b α ln [α] q + qα ln q q α ln q + ) ) + ln q q )ln b ln ), α α ln q d q b α α, α [α] q ln ln q d q, α α ln d q, α. 3.) 3.)

Lemm 3.. The neut lmt s tends to zeo of the q-ntegl ests fo ll vlues of α nd N nd Futhemoe, f q, we get A. Slem / Flomt 7:8 3), 473 483 476 N lm α ln d q α ln d q 3.3) q α ln q q α )[α] q N lm α ln d ) α + Poof. Fom Lemm 3., fo ll vlues of α nd N, we hve q α ) ) q α ) 3.4) ) ) )! 3.5) α + N lm α ln d q qα ln q ) q α ln qn lm α ln d q Usng the mthemtcl nducton would yeld N lm α ln d q q α ln q q α )[α] q + qα q α ) + q α q α ) q α ) ) ) ) ) + + q α q α ln q ) q α )[α] q + qα q α ) q α ) 3 ) 3 + q α ) 3 q α ) ) + + q α ) q α ln q q α ) ) q α )[α] q q α ) By tng the lmt of equton 3.4) s q would gve esly the equton 3.5). Lemm 3.3. The nducton yelds ) ) N lm ln d q, N. 3.6) Theoem 3.4. Let f ) be contnuous functon on the closed ntevl [, ], then the functon α ln f ) s q-ntegble on [, ] fo α > nd N. Futhemoe, fo α > m, m N, we hve the functon s q-ntegble on [, ]. α ln f ) D n q f ) n, N 3.7)

A. Slem / Flomt 7:8 3), 473 483 477 Poof. Snce f ) s contnuous functon on the segment [, ], the eteme vlue theoem sttes, t ttns ts mmum M,.e. thee ests c [, ] such tht f ) f c) M fo ll [, ]. It follows tht α ln f )d q t M α ln d q t q) α M q αn n ln q + ) conveges bsolutely fo α >, N. Snce f ) s contnuous functon on the segment [, ], then f ) hs emnde tem n q-tylo fomul.). Ths would yeld α ln f ) D n q f ) n Dm q f ξ) [m] q! q) α+m Dm q f ξ) [m] q! q nα+m) n ln q + ) conveges bsolutely fo α > m, m N nd N. α+m ln d q, < ξ < Theoem 3.5. Let f ) be contnuous functon defned on [, ]. Then the neut lmt s tends to zeo of the q-ntegl α f )d q 3.8) ests fo α > m, m,,,..., α,,,..., m + nd Poof. We hve N lm α f )d q α f )d q α f ) α f ) D n q f ) D n q f ) n d q + n d q + D n q f ) D n q f ) α [α + n] q. 3.9) D n α q f ) D f ) n n q f ) α d q + [α + n] q D n q f ) α+n [α + n] q, α,,,, m + α+n d q Snce f ) s contnuous functon on the segment [, ], Theoem 3.4 tells tht the fst q-ntegl on the ght hnd sde conveges bsolutely s nd the lst sum conssts of tems tend to zeo nd the est s lne sum of λ, λ < ) neglgble functon nd hence the poof s complete. Theoem 3.6. Let f ) be contnuous functon defned on [, ]. Then the neut lmt s tends to zeo of the q-ntegl α ln f )d q, N 3.) ests fo α > m, m,,,..., α,,,..., m +

Poof. The q-ntegl 3.) cn be spltted s α ln f )d q + A. Slem / Flomt 7:8 3), 473 483 478 D n q f ) α ln f ) D n q f ) n d q D n α+n ln q f ) d q + α+n ln d q It s obvous tht the second q-ntegl conveges bsolutely fo ll vlues of α, nd fo α > m, m N nd N s, the fst q-ntegl conveges bsolutely by usng Theoem 3.4. Also the Lemm 3. tells tht the neut lmt of the lst q-ntegl ests s. Ths completes the poof. Theoem 3.7. Let f ) be contnuous functon defned on the ntevl [, ]. Then the functon s q-ntegble on [, ] fo m N nd N. m m ln f ) D n q f ) n 3.) Poof. Snce f ) s contnuous functon on the segment [, ], t stsfes.). It follows tht m m ln f ) D n q f ) n [n] q! Dm+ q f ξ) ln d q, < ξ < [m + ] q! q) Dm+ q f ξ) q n n ln q + ) [m + ] q! conveges bsolutely fo m N nd N. Theoem 3.8. Let f ) be contnuous functon defned on the ntevl [, ]. Then ests fo N. Poof. The q-ntegl 3.) cn be spltted s ln f )d q N lm ln f )d q 3.) + f ) ln [ f ) f )]d q ln d q + f ) ln d q The lmt of the fst q-ntegl on the ght hnd sde s s beng convegent by the pevous Theoem. Lemm 3.3 poves tht the neut lmt of the lst q-ntegl ests fo N. Theoem 3.9. Let f ) be contnuous functon defned on the ntevl [, ]. Then ests fo m N nd N. N lm m ln f )d q 3.3)

Poof. The q-ntegl 3.3) cn be spltted s A. Slem / Flomt 7:8 3), 473 483 479 m ln f )d q + D n q f ) D n q f ) m + m m ln f ) D n q f ) n d q n m ln d q + Dm q f ) [m] q! n m ln d q + Dm q f ) [m] q! ln d q ln d q The lmt of the fst q-ntegl on the ght hnd sde s s beng convegent by Theoem 3.7 fo ll vlues of m N nd N. The second nd thd ntegls convege bsolutely fo ll m,, usng Lemm 3.. Futhe, fom Lemms 3. nd 3.3, we see tht the neut lmt of the q-ntegl n the lst two tems on the ght hnd sde est. Ths ends the poof. The pevous theoems cn be outlned s follow: Theoem 3.. Let f ) be contnuous functon defned on the ntevl [, ]. Then ests fo ll el vlues of α nd N. N lm α ln f )d q 3.4) 4. On the q-gmm functon nd ts devtves The q-gmm functon s defned by q-ntegl epesentton [7, 8] Γ q ) Moeove, t hs the ecuence elton t E q qt)d q t, >. 4.) Γ q + ) [] q Γ). 4.) The q-gmm functon cn be defned fo < nd,,, by usng the fome ecuence fomul. In ptcul, t follows tht f > nd, then nd by q-ntegtng by pts we hve Γ q ) [] q Γ q + ) [] q t D q Eq t) ) d q t 4.3) Γ q ) t E q qt) ) d q t + q) q. 4.4) Moe genelly, t s esy to pove by mthemtcl nducton tht f > n, n N nd,,,, n+, the q-gmm functon hs the fom Γ q ) n t ) q +) E q qt) [] q! t n d qt + q) ) q +) q; q) q + ). 4.5)

A. Slem / Flomt 7:8 3), 473 483 48 It hs been shown n [4] tht the q-gmm functon 4.) s defned by the neut lmt Γ q ) N lm fo,,,..., nd ths functon s lso defned by neut lmt Γ q m) N lm t m E q qt)d q t t E q qt)d q t, 4.6) t m E q qt) m ) q +) [] q! t d q t + q) m+ ) q +) mm+) q; q) q m ) + )m q q) m+ ln q). 4.7) q; q) m ln q fo m N nd when m t hs the fom Γ q ) N lm t E q qt)d q t t [ E q qt) ] d q t + q) ln q). 4.8) ln q It ws poved lso n [4] the estence of th devtve of the q-gmm functon nd defned t fo ll vlues of by the equton Γ ) q ) N lm t ln te q qt)d q t,,. 4.9) The utho n [4] gve the fom of the th devtves of the q-gmm functon t specl cses. We use ou esults n Lemms 3. nd 3.3 to gve genel fom fo th devtves of the q-gmm functon s follows. Fo > n, n N nd N Γ ) q ) N lm Fo nd N Fo n, n N nd N + ln q n ) q +) ++ q [ + ] q[] q! t ln te q qt)d q t n t ln te q qt)d q t + t ln t E ) q +) q qt)d q t t [] q! q + ) ) ) j j. 4.) q + j Γ ) q ) N lm Γ ) q n) N lm + ln q n ) q +) + n q [ n] q[] q! t ln te q qt)d q t t ln te q qt)d q t + j t ln t [ E q qt) ] d q t. 4.) t n ln te q qt)d q t n t n ln te q qt)d q t + t n ln t E ) q +) q qt)d q t t [] q! q n ) ) ) j j. 4.) q n j j

5. The q-bet functon nd ts devtves A. Slem / Flomt 7:8 3), 473 483 48 The q-bet functon s defned by q-ntegl epesentton [7, 8] B q, b) The q-bnoml theoem would yeld the functon f ) q; q) q ; q) b q; q) q ; q) d q, b >,,,,... 5.) q ; q) n q n q; q) n n, < q 5.) s contnuous functon on the ntevl [,] so we cn pply ou esults n secton thee to defne the q-bet functon nd ts devtves fo ll vlues of b s follow: Defnton 5.. The q-nlogue of the bet functon s defned fo ll vlues of b nd,,, by B q, b) N lm b q; q) q d q. 5.3) ; q) If we wnt to me the detls of ths defnton moe pecse, by usng Lemms 3. nd 3.3, we edefne s follow: Fo b > m, m N; b,,,, m + nd N B q, b) N lm Fo b nd,,, b q; q) q ; q) d q b q; q) q ; q) n q n q ; q) q; q) n n d q ; q) n q n q +. 5.4) [n + b] q q; q) n B q, ) N lm q; q) ) q; q d q q) ; q) q d q. 5.5) ; q) Fo b m, m N nd,,, B q, m) N lm m q; q) q ; q) m q; q) q d q ; q) m q ; q) n q n n q; q) n d q + q ; q) n q n [n m] q q; q) n. 5.6) Defnton 5.. The th ptl devtve wth espect to b of the q-bet functon s defned fo ll vlues of b nd,,, s Bq b, b) ) N lm b ln q; q) q d q, N. 5.7) ; q) Also, the detls of ths defnton cn be ognzed s follow:

A. Slem / Flomt 7:8 3), 473 483 48 Fo b > m, m N; b,,,, m + ;,,, nd N Bq b, b) ) N lm b ln q; q) q d q ; q) b ln q; q) q ; q) n q n q n ; q) q; q) n d q + ln q q ; q) n q +)n+b q n+b ) ) ). 5.8) q [n + b] qq; q) n q n+b Fo b ;,,, nd N Bq b, b) ) b N lm ln q; q) ) q; q d q ln q) ; q) q d q. 5.9) ; q) Fo b m, m N;,,, nd N Bq b, b) ) b m N lm m ln q; q) q ; q) + ln q q ; q) n q +)n m q [n m] qq; q) n m ln q; q) q d q ; q) m q ; q) n q n n q; q) n d q q n m ) ) q n m ). 5.) Rem 5.3. It s nown tht the neut lmt, f t ests, s unque nd t s pecsely the sme s the odny lmt, f t ests. We cn vefy ths by usng the equton 5.8) s follows B q, b) b q; q) q ; q) q ; q) n q n [n + b] q q; q) n [b] q ϕ q, q b ; q b+ ; q, q ) q ; q) n q n n q; q) n d q ; q) n q n q + [n + b] q q; q) n q ; q) n q b ; q) n q n q; q) n q b+ ; q) n whee ϕ s the bsc Guss hypegeometc functon whch t hs the well nown dentty ϕ, b; c; q, b c) c; q) b c; q) c; q) b c; q) c b <. Usng ths dentty would yeld the well nown defnton of the q-bet functon [6] B q, b) q)q; q) q +b ; q) Γ q)γ q b),, b,,,. 5.) q ; q) q b ; q) Γ q + b) Refeences [] J.G. vn de Coput, Intoducton to the neut clculus, J. Anl. Mth. 7 959-96) 9 398. [] B. Fshe, K. Ts, The convoluton of functons nd dstbutons, J. Mth. Anl. Appl. 36 5) 364 374. [3] B. Fshe, A non-commuttve neut poduct of dstbutons, Mth. Nch. 8 98) 7 7.

A. Slem / Flomt 7:8 3), 473 483 483 [4] B. Fshe, Neutces nd the poduct of dstbutons, Stud Mth. 57 976) 63 74. [5] B. Fshe, On defnng the ncomplete gmm functon γ m, ), Integl Tnsfoms Spec. Funct. 56) 4) 467 476. [6] B. Fshe, B. Jolevs-Tunes, A. Klçmn, On defnng the ncomplete gmm functon, Integl Tnsfoms Spec. Funct. 44) 3) 93 99. [7] B. Fshe, Y. Kubysh, Neutces nd the bet functon, Rostoc. Mth. Kolloq. 3 987) 56 66. [8] B. Fshe, Y. Kubysh, Neutces nd the Gmm functon, J. Fc. Ed. Tottot. Un. Mth. Sc. 36 987) 7. [9] E. Ozcg, I. Ege, H. Gucy, On ptl devtve of the ncomplete bet functon, Appl. Mth. Lette 8) 675 68. [] E. Ozcg, I. Ege, H. Gucy, An etenson of the ncomplete bet functon fo negtve nteges, J. Mth. Anl. Appl. 338 8) 984 99. [] E. Ozcg, I. Ege, H. Gucy, B. Jolevs-Tunes, Some ems on the ncomplete gmm functon, Mthemtcl Methods n Engneeng, Spnge, Dodecht 7) 97 8. [] Y.J. Ng, H. vn Dm, An pplcton of neut clculus to quntum feld theoy, Intent. J. Moden Phys. A. 6) 97 3. [3] Y.J. Ng, H. vn Dm, Neut clculus nd fnte quntum feld theoy, J. Phys. A. 38 5) 37 33. [4] A. Slem, The neut lmt of the q-gmm functon nd ts devtves, Appl. Mth. Lettes 3 ) 6 68. [5] A. Slem, Estence of the neut lmt of the q-nlogue of the ncomplete gmm functon nd ts devtves, Appl. Mth. Lettes 5 ) 363 368. [6] I. Ege, E. Yýldýým, Some genelzed equltes fo the q-gmm functon, Flomt 6 ) 7 3. [7] G. Andews, R. Asey, R. Roy, Specl Functons, Cmbdge unvesty pess, Cmbdge, 999. [8] G. Gspe, M. Rhmn, Bsc Hypegeometc Sees, Cmbdge Unvesty Pess, Cmbdge, 4. [9] P.M. Rjovć, M.S. Stnovć, S.D. Mnovć, Men vlue theoems n q-clculus. Mt. Vesn. 54 ) 7 78.