Time-Dependent Density Functional Theory in Condensed Matter Physics

Similar documents
Time-Dependent Density Functional Theory in Optical Sciences

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Real-time electron dynamics in solids under strong electromagnetic fields

MCTDH Approach to Strong Field Dynamics

Field due to a collection of N discrete point charges: r is in the direction from

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Molecular dynamics modeling of thermal and mechanical properties

1 Constant Real Rate C 1

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

Determining Modern Energy Functional for Nuclei And The Status of The Equation of State of Nuclear Matter. Shalom Shlomo Texas A&M University

May 29, 2018, 8:45~10:15 IB011 Advanced Lecture on Semiconductor Electronics #7

s = rθ Chapter 10: Rotation 10.1: What is physics?

Basic molecular dynamics

Motion of Wavepackets in Non-Hermitian. Quantum Mechanics

Lecture 5. Plane Wave Reflection and Transmission

The Feigel Process. The Momentum of Quantum Vacuum. Geert Rikken Vojislav Krstic. CNRS-France. Ariadne call A0/1-4532/03/NL/MV 04/1201

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Nuclear Chart. Takashi NAKATSUKASA Theoretical Nuclear Physics Laboratory RIKEN Nishina Center. Real-space, real-time approaches ) Few-body model

Muffin Tins, Green s Functions, and Nanoscale Transport [ ] Derek Stewart CNF Fall Workshop Cooking Lesson #1

Name of the Student:

Density Functional Theory I

Let s treat the problem of the response of a system to an applied external force. Again,

Density Matrix Description of NMR BCMB/CHEM 8190

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

calculating electromagnetic

ESS 265 Spring Quarter 2005 Kinetic Simulations

Density Matrix Description of NMR BCMB/CHEM 8190

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1

Lecture 9: Dynamic Properties

Reflection and Refraction

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions:

Lecture 17: Kinetics of Phase Growth in a Two-component System:

8. HAMILTONIAN MECHANICS

Chapter Finite Difference Method for Ordinary Differential Equations

CHAPTER 10: LINEAR DISCRIMINATION

Linear Response Theory: The connection between QFT and experiments

Teoría del Funcional de la Densidad (Density Functional Theory)

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

Parametric Amplification of a Terahertz Quantum Plasma Wave

Chapter 3: Vectors and Two-Dimensional Motion

3.012 Fund of Mat Sci: Bonding Lecture 1 bis. Photo courtesy of Malene Thyssen,

Material Science Simulations using PWmat

Isotope Effect in Nuclear Magnetic Resonance Spectra of Germanium Single Crystals.

Born Oppenheimer Approximation and Beyond

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

Ferent equation of the Universe

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic *

Fast Calibration for Robot Welding System with Laser Vision

Molecular Simulations of Biomolecules. Using Groningen Machine for Chemical Simulations (GROMACS)

Backcalculation Analysis of Pavement-layer Moduli Using Pattern Search Algorithms

(Time-dependent) Mean-field approaches to nuclear response and reaction

Plasmonics and non-local interactions from TDDFT: graphene and metal surfaces

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

Monetary policy and models

Mechanics Physics 151

A multiple-relaxation-time lattice Boltzmann model for simulating. incompressible axisymmetric thermal flows in porous media

SCIENCE CHINA Technological Sciences

Mechanics Physics 151

Complex atoms and the Periodic System of the elements

Physics 201 Lecture 15

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Physics Exam II Chapters 25-29

Numerical solution of differential equations

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Mechanics Physics 151

FI 3103 Quantum Physics

10/15/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

New integrated programmable optical diffractive element

24-2: Electric Potential Energy. 24-1: What is physics

2 shear strain / L for small angle

Variants of Pegasos. December 11, 2009

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

Lecture 22 Electromagnetic Waves

Department of Chemistry Chapter 4 continued

19 The Born-Oppenheimer Approximation

N 1. Time points are determined by the

Stochastic Maxwell Equations in Photonic Crystal Modeling and Simulations

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

A VISCOPLASTIC MODEL OF ASYMMETRICAL COLD ROLLING

Handling Fuzzy Constraints in Flow Shop Problem

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y

Comprehensive Integrated Simulation and Optimization of LPP for EUV Lithography Devices


Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

Implementation of Quantized State Systems in MATLAB/Simulink

Simulation of Non-normal Autocorrelated Variables

p E p E d ( ) , we have: [ ] [ ] [ ] Using the law of iterated expectations, we have:

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Transcription: Messenger RNA, mrna, is produced and transported to Ribosomes

Transcription:

Exenal Revew on Cene fo Compuaonal Scences Unvesy of Tsukuba 013..18-0 Tme-Dependen Densy Funconal Theoy n Condensed Mae Physcs K. YABANA Cene fo Compuaonal Scences Unvesy of Tsukuba Collaboaos: G.F. Besch Unv. Washngon T. Oobe JAEA J.-I. Iwaa Unv. Tokyo S. Shnohaa Unv. Tsukuba/MPI T. Sugyama Unv. Tsukuba S.A. Sao Unv. Tsukuba

poon neuon Nucle Nucleon many-body sysem Aoms Molecules Solds Elecon many-body sysems Sze 10-15 m 10-10 m Enegy 1MeV 1eV Tme 10-3 s 10-17 s Mass 10 9 ev 5x10 5 ev Ineacon Nuclea foce Coulomb foce (Song neacon) Sascs Femon Femon

Tme-Dependen Densy Funconal Theoy Successful fo quanave descpon of many-femon dynamcs Nucle (nucleon dynamcs) Aoms Molecules Solds (elecon dynamcs) Lnea esponse egme - Gan esonances ( (Q)RPA ) - Eleconc excaons n molecules - Opcal esponse of molecules and solds Nonlnea egme Inal value poblem - Heavy on collson - Lase scence (Inense and ula-sho lase pulse)

4 We ae developng eal-me TDDFT compuaonal mehod. K. Yabana G.F. Besch Phys. Rev. B54 4484 (1996). ( ) ) ( ) ( )) ( ( ' ) ' ( ' ) ( V n n d e R V m a ex xc a on ψ ψ µ = = n ) ( ) ( ψ Hamlonan fo elecons n Fs-pncples DFT We poneeed he mehod combnng nuclea mehod developed n TDHF calculaon wh fs-pncples densy funconal Hamlonan n condensed mae physcs. ( ) l k j m z y x ψ - Hgh-ode fne dffeence appoxmaon fo dffeenal opeaos - Taylo expanson mehod fo me evoluon

Elecon dynamcs n meallc cluses by TDDFT K. Yabana G.F. Besch Phys. Rev. B54 4484 (1996). Na 147 Assume Icosahedal shape L 147 Densy change nduced by mpulsve foce 30 30 0 0 Dpole momen 10 0-10 Dpole momen 10 0-10 -0-0 -30-30 0 10 0 Tme [ev -1 ] 30 0 40 50 Dpole momen as funcon of me 10 0 Tme [ev -1 ] 30 40 50

Real-me calculaon fo opcal absopon specum of L 147 K. Yabana G.F. Besch Phys. Rev. B54 4484 (1996). Real-me calculaon fo auocoelaon funcon zˆ ( ) zˆ ( 0) [ev -1 ] Exp:L 139 TDDFT Foue ansfomaon oscllao sengh dsbuon σ 1 k ω ( ω) d e zˆ ( ) zˆ ( 0)

Phooabsopon of molecules by TDDFT (LB94 funconal) Connuum RPA calculaon fo defomed sysem K. Yabana Y. Kawasha T. Nakasukasa J.-I. Iwaa Chaged Pacle and Phoon Ineacons wh Mae: Recen Advances Applcaons and Inefaces Chape 4 Taylo & Fancs 010. N H O C 6 H 6 C 60

Elecon dynamcs n bulk S unde song lase pulse I= 3.5 10 14 W/cm T=50 fs ħω=0.5 ev Lase phoon enegy s much lowe han dec bandgap. Elecc Feld (a.u.) 0 10 0 30 Tme (fs) 40 Densy change fom he gound sae (110) Gound sae densy (110) Red Geen 0 Blue - 8

Tme-dependen exenson of Bloch s band heoy ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ' ' ' 1 = = nk nk nk xc nk u n u n n e d A c e k p m u µ ( ) ( ) u a u nk nk = Compuaonal aspecs - 3D unfom gd fo space hgh-ode fne dffeence fo dffeenaon - Taylo expanson fo me evoluon Elecon dynamcs n cysallne sold (aomc posons ae fxed)

Delecc funcon of S fom eal-me TDDFT-ALDA Insananeous kck a =0 hen calculae cuen J() σ 1 = k ω ( ω) d e J ( ) ε ( ω) = 1 4 ( ω) ω π σ J ( ) τ fs 10 No vey good n qualy howeve.

Fones of Lase Scence - Nonlnea elecon dynamcs nduced by song lase pulse - Ulafas elecon dynamcs femo o aosecon - 11

Fones of Opcal Scences: Inense lase pulse on sold Lase nensy 13 15 10 10 W/cm 10 W/cm Nonlnea opcs Coheen phonon HHG Elecon-hole plasma Opcal beakdown Lase machnng Lase acceleaon Vacuum beakdown Nonelavsc Quamum mechancs Relavsc Classcal mechancs ee()z z Exenal elecc feld by lase pulse Inenal elecc feld by nucle

Fones n Opcal Scences: Ula-sho dynamcs Pcosecond 10 1 s Femosecond 10 15 s Aosecond 10 18 s 10 3 s Tme Peod of Opcal phonon (S 64 fs) Peod of elecon obal n Hydogen 150as Nucleon moon n nucleus Peod of T-sapphe lase pulse Shoes lase pulse 80 as (008) Real-me obsevaon of valence elecon moon E. Goulelmaks e.al Naue 466 739 (010). 13

Nonhemal Lase Machney Melng ablaon flamenaon on bulk suface R.R. Gaass E. Mazu Naue Phooncs 0 (008). Mcomachnng wavegude- Nanosugey Opcal mcoscope mage of wavegudes wen nsde bulk glass by a 5-MHz an of 5-nJ sub-100-fs pulses C.B. Schaffe e.al OPTICS LETTERS 6 93 (001) Ablaon of a sngle mochondon n a lvng cell. N. Shen e.al Mech. Chem. Bosysems 17 (005). 14

Queson: How o descbe song lase pulse popagaon n solds? Assume consan delecc funcon λ = 800nm ω = 1.55eV (below dec band gap) A/c Vacuum ε=1 S ε=16 Macoscopc Maxwell eq. ε c ( z) z A = ( z ) A( z ) 0 [µm] Weak feld Descbed solely by delecc funcon (lnea esponse) Exemely song feld Mcoscopcally nonlnea elecon dynamcs nsde sold. Macoscopcally elecomagnesm need modfcaon. How?

Queson: How o descbe song lase pulse popagaon n solds? Ou answe I s necessay o combne elecomagnesm and quanum mechancs by lage scale compung Real-me TDDFT fo mcoscopc elecon dynamcs Macoscopc Maxwell equaon 16

Peubaon heoy sepaaes macoscopc elecomagnesm (EM) and quanum mechancs (QM) hough Consuve Relaon. D α = α α ( ) E ( ) 4πP ( ) = d' ε ( ' ) E ( ' ) αβ β Elecomagnesm: Maxwell equaon fo macoscopc felds E D B H Lnea consuve elaon D = [ ] = ε ( ω)e D E Quanum Mechancs: Peubaon heoy o calculae lnea suscepbles ε(ω) D α As he feld sengh becomes lage nonlnea opcs becomes mpoan. = αβ β ( ( ) ( ) ( ) ) d' ε ' E ' 4π d' d'' χ ( ' '' ) E ( ' ) E ( '' ) αβγ β γ A exeme nense lm EM and QM no moe sepaae.

Mulscale smulaon ( ) ( ) ( ) J c A A c 4 1 π = Macoscopc gd pons(μm) o descbe macoscopc veco poenal { } e on xc en en n E e A c e m 4 1 = = π φ ψ δ δ φ ψ ψ ψ ( ) A n c e m j j d J e e e * * 4 ) ( π ψ ψ ψ ψ = = Ω A each macoscopc pons Kohn-Sham obals ae pepaed and descbed n mcoscopc gds. Exchange of nfomaon by macoscopc cuen and macoscopc veco poenal. ( ) A ( ) J ψ A each macoscopc gd pon We consde a un cell and pepae mcoscopc gd. K. Yabana T. Sugyama Y. Shnohaa T. Oobe G.F. Besch Phys. Rev. B85 045134 (01).

Popagaon of weak pulse Odnay elecomagnesm s OK. A/c Lase fequency:1.55ev: lowe han dec bandgap.4ev(lda) I=10 10 W/cm Vacuum S [µm] =0 [µm] =0.8 [µm] =1.6 [µm] Coupled Maxwell TDDFT smulaon 19

Moe nense lase pulse Dynamcs of elecons and macoscopc EM felds ae no moe sepaable. I =5 x 10 1 W/cm Vacuum S [µm] =0 [µm] =0.8 [µm] =1.6 [µm] 0

Compuaonally challengng mulscale smulaon A pesen 1-dm popagaon (macoscopc gd) S damond: 1000 coes 10 hous 0000 coes 0 mn (K-compue Kobe) SO (α-quaz) 30000 coes hous Oblque ncdence -dm 50 3-dm - Self focusng - Ccula polazaon A mllon of maco-gd pons 1000 need o wa nex geneaon supecompues

Compuaonally scalable smulaon 1000 coes 10 hous 30000 coes 0 mn (K-compue Kobe) Pefomance a K-Compue n Kobe (n ealy access) We ae ganed 4M node-hous a K-compue fo 014 yea.

Concluson TDDFT s a useful unvesal heoy fo many-femon dynamcs. Nuclea Physcs Aoms Molecules Solds Lneaa esponse Gan esonances Phooabsopon Delecc funcon Inal value poblem Heavy on collsons Song lase scences Ineacon of song lase pulse and solds eque connecon of wo basc physcs: Macoscopc elecomagnesm and quanum mechancs We have developed a new mulscale smulaon Maxwell TDDFT scheme whch uns only a he lages supecompues avalable oday. 3