Funding provided by the Los Alamos National Laboratory Directed Research and Development Program

Similar documents
Magnetoelectric Effects in Multiferroics

THz and infrared spectroscopy in magnetoelectric materials

Ultrafast Dynamics in Complex Materials

MagnetoElastic Interactions in Multiferroic Materials: An Experimental Point of View

V High frequency magnetic measurements

Nonlinear Electrodynamics and Optics of Graphene

Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy. Chih Wei Luo ( 羅志偉 )

doi: /PhysRevLett

Advanced Spectroscopies of Modern Quantum Materials

Holcomb Group Capabilities

Recent Developments in Magnetoelectrics Vaijayanti Palkar

Introduction on Multiferroic Materials. Abstract

SUPPLEMENTARY INFORMATION

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse

arxiv: v1 [cond-mat.str-el] 4 Apr 2007

Multiferroic BiFeO 3. Sang-Wook Cheong. Seongsu Lee. Partially supported by NSF-MRSEC

Challenges for Materials to Support Emerging Research Devices

Part IV Multiferroic RMnO 3. Ferroelectric & magnetic ordering SHG spectroscopy SHG topography Identification of multiferroic interactions

NEW ROUTES TO MULTIFERROICS

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields

Optical Spectroscopy of Advanced Materials

T C SUH. Tuning multiferroics under extreme conditions: Effects of high pressure, magnetic fields, and substitutions. Bernd Lorenz

Magnetism and Magnetic Switching

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Understanding the Magnetic Ground States for Improper Multiferroic Materials

Unidirectional light propagation in multiferroics and multi-antiferroics

Material Science II. d Electron systems

Highenergy Nuclear Optics of Polarized Particles

Neutron and x-ray spectroscopy

Neutron scattering a probe for multiferroics and magnetoelectrics

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film

Contents. Acknowledgments

ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6

Magnetoelectric effect

arxiv: v2 [cond-mat.str-el] 13 Nov 2012

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Complex Ordering Phenomena in Multifunctional Oxides

Neutron scattering from quantum materials

Magnetoelectricity and multiferroics. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Left-handed materials: Transfer matrix method studies

arxiv:cond-mat/ v1 1 Dec 1999

Skyrmion Dynamics and Topological Transport Phenomena

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Coherent THz Pulses: Source and Science at the NSLS

Optical studies of current-induced magnetization

Novel Field-Induced Phases in HoMnO 3 at Low Temperatures

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials

Neutron spectroscopy

arxiv: v1 [physics.optics] 17 Aug 2018

Decoherence in molecular magnets: Fe 8 and Mn 12

Multi-cycle THz pulse generation in poled lithium niobate crystals

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Optical Properties of Solid from DFT

Solid State Physics (condensed matter): FERROELECTRICS

Doctor of Philosophy

Mesoscopic Spintronics

Plan of the lectures

Magnetic Oxides. Gerald F. Dionne. Department of Materials Science and Engineering Massachusetts Institute of Technology

research papers High-temperature structural evolution of hexagonal multiferroic YMnO 3 and YbMnO 3

Coherent Lattice Vibrations in Mono- and Few-Layer. WSe 2. Supporting Information for. 749, Republic of Korea

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid

Ultrafast Laser Physics. THz pulse generation and detection

Competing Ferroic Orders The magnetoelectric effect

Scientific opportunities with ultrafast electron diffraction & microscopy

Ferroelectricity, Magnetism, and Multiferroicity. Kishan K. Sinha Xu Lab Department of Physics and astronomy University of Nebraska-Lincoln

ABSTRACT. Rolando Valdés Aguilar, Doctor of Philosophy, Professor H. Dennis Drew Department of Physics

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

Disordered Solids. real crystals spin glass. glasses. Grenoble

Coupling of heat and spin currents at the nanoscale in cuprates and metallic multilayers

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Magnon, Spinon and Phonon in spin caloritronics

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Supplementary Figure 1

Outline. Raman Scattering Spectroscopy Resonant Raman Scattering: Surface Enhaced Raman Scattering Applications. RRS in crystals RRS in molecules

X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er)

Superconductivity Induced Transparency

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Experimental Demonstration of Spinor Slow Light

(DPHY 21) 1) a) Discuss the propagation of light in conducting surface. b) Discuss about the metallic reflection at oblique incidence.

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

THz field strength larger than MV/cm generated in organic crystal

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

Scattering-type near-field microscopy for nanoscale optical imaging

A model of magnetic order in hexagonal HoMnO 3

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface.

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

SUPPLEMENTARY INFORMATION

Electron spins in nonmagnetic semiconductors

Unidirectional spin-wave heat conveyer

SUPPLEMENTARY INFORMATION

Supporting Online Material for

Transcription:

Combining ferroelectricity and magnetism: the low energy electrodynamics Diyar Talbayev Center for Integrated Nanotechnologies Los Alamos National Laboratory

Acknowledgements Los Alamos National Laboratory Toni Taylor A.V. Balatsky Darryl Smith Stuart Trugman John O Hara Boston University Rick Averitt Rutgers University Seongsu Lee S.-W. Cheong Osaka University, Japan Tsuyoshi Kimura Inha University, Korea Namjung Hur Nanyang Technological University, Singapore Elbert Chia UCSD Andrew Laforge Dmitri Basov Funding provided by the Los Alamos National Laboratory Directed Research and Development Program

Ferroic properties FERROMAGNETISM High-power current-driven write operation FERROELECTRICITY Low-power voltage-driven write But Issues of fatigue need to be overcome enter MULTIFERROICITY!!!

Magnetoelectric multiferroics MULTIFERROICS materials with coexisting magnetism and ferroelectricity. Magnetic order Electric polarization magnetoelectric interaction Possible applications for magnetoelectric materials Magnetoelectric memory Magnetically switched electro-optic device Electric-field-modulated visible Faraday rotator Magnetically (electrically)-modulated piezoelectric (piezomagnetic) devices, etc. V. E. Wood, A. F. Austin, Int. J. Magnetism 5, 303-315 (1974)

Magnetoelectric effect BiFeO 3 : ferroelectric antiferromagnet Fe ions: O Bi Fe Apply electric field E Turn the magnetic moments! Top view Y.-H. Chu et al., Nat. Materials 7 478 (2008) easy axis for magnetization

Dynamic magnetoelectric effect BiFeO 3 Bi Top view Rock the polarization P M O Fe excite phonons Magnetic moments respond! Y.-H. Chu et al., Mixing of magnetic and lattice vibrations DYNAMIC MAGNETOELECTRIC EFFECT Nat. Materials 7 478 (2008)

Magnetic and lattice motion interacts with light Electromagnetic wave incident on the crystal?? Phonons ~ oscillating electric dipole Coupling to the electric field of the light wave Phonons in BiFeO 3 Lobo et al., Phys. Rev. B 76 172105 (2007) 33 cm -1 ~ 1 THz ~ 4 mev Resonance in the dielectric function, a.k.a. optical conductivity: ε(ω) σ(ω)

Magnetic and lattice motion interacts with light Electromagnetic wave incident on the crystal Magnons ~ oscillating magnetic dipole 0.8 Magnetic excitations in BiFeO 3 33 cm -1 ~ 1 THz ~ 4 mev Coupling to the magnetic field of the light wave Transmission 0.6 0.4 0.2 T=30 K 0.0 10 15 20 25 30 35 Frequency (cm -1 ) D. Talbayev et al., unpublished Resonance in the magnetic susceptibility: χ(ω) µ(ω)

Mix it up: electromagnons TbMn 2 O 5 : antiferromagnet and ferroelectric Sushkov et al, Phys. Rev. Lett. 98 27202 (2007) electric dipole active magnon : electromagnon Similar observations : multiferroics TbMnO 3, Eu 0.75 Y 0.25 MnO 3 Pimenov et al., Nature Phys. 2 97 (2006) Valdes Aguilar et al., Phys. Rev. B 76 060404R (2007) Pimenov et al., Phys. Rev. B 77 014438 (2008)

Electromagnons determine magnetoelectric functionality TbMn 2 O 5 : antiferromagnet and ferroelectric Sushkov et al, Phys. Rev. Lett. 98 27202 (2007) onset of electromagnon response antiferromagnet, ferroelectric paramagnet (i) (ii) Electromagnon contributes to static dielectric constant: Electromagnon properties depend on the microscopic magnetoelectric coupling ε σ1( ω ) 1( 0 ) = 1+ 8 dω 2 ω 0 i) Properties of electromagnons

Dynamic magnetoelectric effect in hexagonal Ba 0.6 0.6 Sr 1.4 Zn Zn 2 Fe Fe 12 O 22 Layered magnetic structure Several magnetic phases N. Momozawa and Y. Yamaguchi, J. Phys. Soc. Jpn. 62 12992 (1993) T. Kimura, G. Lawes, and A.P. Ramirez, PRL 94 137201 (2005)

Dynamic magnetoelectric effect in hexagonal Ba 0.6 0.6 Sr 1.4 Zn Zn 2 Fe Fe 12 O 22 Control of electric polarization by magnetic field: T. Kimura, G. Lawes, and A.P. Ramirez, PRL 94 137201 (2005)

Time-domain studies of elementary excitations visible optical pulse excitation, a.k.a. pump Pump and probe wavelength: 800 nm (~1.5 ev) Electrons, phonons, magnons optical pulse interrogation (probe) of material s response Dynamics of photo-excited quasiparticles often exposes properties not detected by conventional probes transport, magnetization, or optical conductivity

Time-domain detection of magnetic motion Magneto-optical Kerr effect (MOKE) rotation of polarization of light upon reflection by a magnetized medium reflected probe beam ferromagnet La 2/3 Ca 1/3 MnO 3 MOKE intensity M 0 500 1000 arrival of Time (ps) pump M & = γm H eff H H + H + eff = 0 anisotropy H demag D. Talbayev et al, Phys. Rev. B 73 14417 (2006); Appl. Phys. Lett. 86 182501 (2005)

Time-resolved reflectance : coherent response probe pump Ba 0.6 Sr 1.4 Zn c axis B Zn 2 Fe R/R (x10-6 ) Fe 12 O 22 80 60 40 20 0-20 22 : photoinduced change in reflectance 0 T 0.1 T 0.5 T 1.0 T Coherent excitation of magnetic or lattice motion T=10 K 400-nm pump and probe 1.5 T 2.0 T 2.5 T 0 50 100 150 200 250 Time (ps) D. Talbayev et al., Phys. Rev. Lett. 101 097603 (2008)

Magnetic or lattice? ocsillation frequency ω N. Momozawa and Y. Yamaguchi, J. Phys. Soc. Jpn. 62 12992 (1993) 50 40 30 20 10 0 Os scillation frequency (GHz) 60 50 40 30 20 10 field normal to the c axis field along the c axis 0.0 0.5 1.0 1.5 2.0 Magnetic field (T) T=10 K Strong evidence in support of magnetic origin of the excitation electron spin resonance, i.e., k=0 magnon D. Talbayev et al., Phys. Rev. Lett. 101 097603 (2008)

More evidence against the lattice LuMnO 3 Oscillation frequency: f PHONONS n / λ R/R (arb. units) 400 nm 800 nm T=15 K H=0.2 T ( R/R(800)-decay) x 10 D. Lim et al., Appl. Phys. Lett. 83 4800 (2003) 0 50 100 150 200 Time (ps) Identical oscillation frequency at different probe wavelengths D. Talbayev et al., Phys. Rev. Lett. 101 097603 (2008)

Calculation of magnon frequencies B H = H ex ( M Si M Lj ; M M ; M M 2 ) + D ( M Liz + M 2 L1 L2 S1 S 2 Siz ) D the only free parameter T. Kimura, G. Lawes, and A.P. Ramirez, PRL 94 137201 (2005) N. Momozawa and Y. Yamaguchi,J. Phys. Soc. Jpn. 62 12992 (1993)

Calculation of magnon frequencies D. Talbayev et al., Phys. Rev. Lett. 101 097603 (2008)

Dynamic magnetoelectric effect R/R (x10-6 ) 80 60 40 20 0 Ba 0.6 Sr 1.4 Zn Zn 2 Fe Fe 12 O 22 T=10 K 400-nm pump and probe 0 T 0.5 T 1.5 T 0 50 100 150 200 250 Time (ps) Modulation of reflectance n 1 R = n + 1 n = ε Modulation of n and ε by magnon motion: dynamic magnetoelectric effect 2 Optical detection of magnetic state using reflection implications for data storage and spintronics.

Magnetoelectricity in hexagonal HoMnO 3 Ferroelectric P FE Triangular antiferromagnet, T N =72 K T c =875 K Mn ions: z=c/2 z=0 40 K < T < 72 K T R T N z=c/2 5 K < T < 40 K T Ho T R z=0 T < 5 K T Ho Litvinchuk et al., JPCM 16 809 (2004) Vajk et al., PRL 94 87601 (2005)

Magnetoelectricity in hexagonal HoMnO 3 Magnetism of Ho 3+ (S=2, L=6, J=8) ions: Two sites: Ho(1) C 3v Ho(2) C 3 ordered for T<T Ho =5 K z T<T N E=0 Applied electric field induces magnetization of Ho ions: H int =ΣS Ho ΑS Mn Magnetization n Lottermoser et al., Nature 430 541 (2004)

Far-infrared study of magnetic excitations HoMnO 3 h c (001) (110) H static field lightwave H h

Far-infrared study of magnetic excitations 1 THz 300 µm 0.004 ev 33cm -1 47 K excitation pulse E field amplitude 1.0 0.5 0.0-0.5 SAMPLE REFERENCE gating pulse 3 6 9 12 15 Time (ps) 25 Broadband Measurement of electric field E (1) Photoconductive antennas (2) Electro-optic crystals E field amplitude 20 15 10 5 SAMPLE REFERENCE 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Frequency (THz)

Magnetic excitations in HoMnO 3 h 0.30 0.25 T=10 K h Transmission 0.20 0.15 0.10 h c 0.05 h c 0.00 20 30 40 50 60 70 80 90 100 Frequency (cm -1 ) Crystal field excitations of Ho ions Antiferromagnetic resonance (AFMR) of Mn ions Neutron scattering: Vajk et al., Phys. Rev. Lett. 94 87601 (2005)

Crystal field splitting of Ho 3+ ground state Two Ho 3+ (S=2, L=6, J=8) cites with C 3 and C 3v point symmetries m = -8..+8 ±8 ±7 J=8 ±1 0 ± 8,± 2, m4 6 s,0 6a 6 s,0 3a = 3 3 3s = 3 + 3 The electrostatic environment of Ho ions determines the crystal field splitting ± 7,± 1, m5 Abragam and Bleaney, Electron paramagnetic resonance of transition ions, Clarendon press, 1970

Magnetic resonance of Mn ions z M 2 B M 1 λ M 3 B Classical treatment F = λσm i M j + K ( M z i 2 ) BΣM z i Interaction parameters measured by neutron scattering in zero field by Vajk et al., Phys. Rev. Lett. 94 87601 (2005)

Magnetic resonance of Mn ions 90 80 T=10 K, B c 90 80 T=10 K, B c 90 80 Frequency (cm -1 ) 70 60 50 40 70 60 50 40 70 60 50 40 30 30 30 20 0 1 2 3 4 5 6 7 8 Magnetic field (T) 20 20 0 1 2 3 4 5 6 7 8 Magnetic field (T) D. Talbayev et al., Phys. Rev. Lett. 101 247601 (2008)

Magnetic resonance of Mn ions H ex = λm 0 H d = KM 0 Palme et al., Solid State Comm. 76 873 (1990) Why the discrepancy? D. Talbayev et al., Phys. Rev. Lett. 101 247601 (2008)

Exchange coupling between Ho and Mn ions YMnO 3 : similar material hexagonal lattice, ferroelectric, triangular antiferromagnet but Y ions are not magnetic and the calculation works!! Penney et al., J. Appl. Phys. 40 1234 (1969) Sato et al., Phys. Rev. B 68 014432 (2003) Discrepancy in HoMnO 3 is due to Ho-Mn (HM) exchange interaction: F HM = H 6J zχ g gµ z HM ex 2 B = J ~ ij S Ho iz S Mn jz Mn B M iz = λ χbχ B g µ Mn z Effective magnetic field acting on Mn ions! = HM J z B z M B S Mn iz λ HM = 1 D. Talbayev et al., Phys. Rev. Lett. 101 247601 (2008)

Magnetoelectricity in HoMnO 3 Ferromagnetic exchange between Ho and Mn: H HM ex ~ ~ z = J S S < 0 z ij Ho iz Mn jz Same interaction responsible for the magnetoelectricity: J ij Lottermoser et al., Nature 430 541 (2004) T<T N E Magnet tization Magnons allow the determination of microscopic details of magnetoelectric interaction. In HoMnO 3, it is the Ho-Mn magnetic exchange coupling.

Summary (i) (ii) Magnetic and lattice excitations (magnons and phonons) play a fundamental role in the quest for understanding and exploiting magnetoelectric materials Detection of magnetic motion and magnetic state via the modulation of reflectance R/R (x10-6 ) Ba 0.6 Sr 1.4 Zn 2 0.5 T Zn 2 Fe T=10 K 400-nm pump and probe Fe 12 O 2 0 50 100 150 200 Time (ps) (iii) Properties of magnons and phonons help reveal the microscopic details of magnetoelectric interaction H HM ex = ~ J HoMnO 3 z ij S Ho iz S Mn jz