Planetary System Stability and Evolution. N. Jeremy Kasdin Princeton University

Similar documents
Testing Theories of Planet Formation & Dynamical Evolution of Planetary Systems using Orbital Properties of Exoplanets

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

EXOPLANET LECTURE PLANET FORMATION. Dr. Judit Szulagyi - ETH Fellow

Definitions. Stars: M>0.07M s Burn H. Brown dwarfs: M<0.07M s No Burning. Planets No Burning. Dwarf planets. cosmic composition (H+He)

The Formation of the Solar System

Planet Formation: theory and observations. Sean Raymond University of Colorado (until Friday) Observatoire de Bordeaux

Giant Planet Formation

Dynamically Unstable Planetary Systems Emerging Out of Gas Disks

Accretion of Planets. Bill Hartmann. Star & Planet Formation Minicourse, U of T Astronomy Dept. Lecture 5 - Ed Thommes

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Mars Growth Stunted by an Early Orbital Instability between the Giant Planets

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

Solar System evolution and the diversity of planetary systems

Kozai-Lidov oscillations

Ruth Murray-Clay University of California, Santa Barbara

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture 16. How did it happen? How long did it take? Where did it occur? Was there more than 1 process?

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

Chapter 15: The Origin of the Solar System

Kuiper Belt Dynamics and Interactions

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS

Class 15 Formation of the Solar System

Extrasolar Planets: Dynamics and Formation - Numerical Simulations for Terrestrial Planet Formation

Terrestrial planet formation: planetesimal mixing KEVIN WALSH (SWRI)

Formation of the Solar System Chapter 8

Chapter 15 The Formation of Planetary Systems

Astronomy 405 Solar System and ISM

9. Formation of the Solar System

-Melissa Greenberg, Arielle Hoffman, Zachary Feldmann, Ryan Pozin, Elizabeth Weeks, Christopher Pesota, & Sara Pilcher

F. Marzari, Dept. Physics, Padova Univ. Planetary migration

Solar System Formation

Planetary system dynamics Part III Mathematics / Part III Astrophysics

Astronomy 405 Solar System and ISM

Who was here? How can you tell? This is called indirect evidence!

Pluto, the Kuiper Belt, and Trans- Neptunian Objects

The dynamical evolution of the asteroid belt in the pebble accretion scenario

arxiv:astro-ph/ v2 15 May 2008

Moon Obs #1 Due! Moon visible: early morning through afternoon. 6 more due June 13 th. 15 total due June 25 th. Final Report Due June 28th

Accretionary Disk Model

Evolution of protoplanetary discs

Chapter 19 The Origin of the Solar System

Formation of the Solar System. What We Know. What We Know

Solar System Formation

Habitability in the Upsilon Andromedae System

Planetary system dynamics Mathematics tripos part III / part III Astrophysics

The Coriolis effect. Why does the cloud spin? The Solar Nebula. Origin of the Solar System. Gravitational Collapse

1star 1 star 9 8 planets 63 (major) moons asteroids, comets, meteoroids

arxiv: v1 [astro-ph.ep] 20 Apr 2014

Solar System Formation

Nature and Origin of Planetary Systems f p "

Origin of the Solar System

Forming habitable planets on the computer

Orbital Structure and Dynamical Evolution of. TNOs. Patryk Sofia Lykawka ( )

9.2 - Our Solar System

The Long-Term Dynamical Evolution of Planetary Systems

Origins of Gas Giant Planets

Planetary system dynamics. Planetary migration Kozai resonance Apsidal resonance and secular theories Mean motion resonances Gravitational scattering

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei

Detection & Characterization of Resonant Planetary Systems with SIM

Clicker Question: Clicker Question: Clicker Question:

Dating the Universe. But first... Lecture 6: Formation of the Solar System. Observational Constraints. How did the Solar System Form?

Making a Solar System

Origin of the Solar System

Disc-Planet Interactions during Planet Formation

Comparative Planetology I: Our Solar System

Astronomy 241: Foundations of Astrophysics I. The Solar System

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism

1 Solar System Debris and Formation

Formation of Planets around M & L dwarfs

The Collisional Evolution of Small Bodies in the Solar System

planet migration driven by a planetesimal disk Solar System & extra solar planets: evidence for/against planet migration?

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Planetary Formation and Orbital Stability in Binary Star Systems

Our Planetary System & the Formation of the Solar System

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 ( ) 1642 planets candidates (

1. Solar System Overview

Minimum Mass Solar Nebulae, Nice model, & Planetary Migration.

2 Ford, Rasio, & Yu. 2. Two Planets, Unequal Masses

Lecture 20: Planet formation II. Clues from Exoplanets

Origin of the Solar System

Detectability of extrasolar debris. Mark Wyatt Institute of Astronomy, University of Cambridge

SIMULTANEOUS FORMATION OF GIANT PLANETS

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.

Dynamic Exoplanets. Alexander James Mustill

Cosmology Vocabulary

Terrestrial planet formation surrounding close binary stars

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

How do we model each process of planet formation? How do results depend on the model parameters?

eraser on string density bottles spinning table glass dish w/pepper

The Earth-Moon system. Origin of the Moon. Mark Wyatt

Announcements. HW #3 is Due on Thursday (September 22) as usual. Chris will be in RH111 on that day.

Why are Saturn s rings confined to a thin plane? 1. Tidal forces 2. Newton s 1st law 3. Conservation of energy 4. Conservation of angular momentum

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

TERRESTRIAL PLANET FORMATION IN THE CENTAURI SYSTEM Elisa V. Quintana. Jack J. Lissauer and John E. Chambers. and Martin J. Duncan

The Earth-Moon system. Origin of the Moon. Mark Wyatt

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune

PLANETARY MIGRATION A. CRIDA

Notes: The Solar System

Hydrodynamic Outcomes. Transitional Discs. of Planet Scattering in. Nick Moeckel IoA. Phil Armitage Colorado

The Fomalhaut Debris Disk

Transcription:

Planetary System Stability and Evolution N. Jeremy Kasdin Princeton University (Lots of help from Eric Ford, Florida and Robert Vanderbei, Princeton) KISS Exoplanet Workshop 10 November 2009

Motivation Understand Formation of Planetary Systems How can extrasolar planet observations provide clues to the physics of planet formation? Do observations of planetary systems today reflect the outcome of planet formation? Or have they evolved since ~100 Myr? Are planetary systems like our own common/rare? Are Giant Planets in circular orbits at 5 AU common? Are Terrestrial/Habitable Planets common? Rapid & dramatic increase in observational data Artwork courtesy of Sylwia Walerys

? 3

Multi-Planet Systems Wright et al. (2008)

Chas told you about Early Stage evolution (disks and planetesimals). This discussion focuses on Late Stage evolution. Def.: The Late Stage of a planetary system is defined as the time after which it becomes Hamiltonian. The dynamical evolution is determined entirely by gravity. Bottom Line: We can and should expect to see complex non-keplerian motion of multi-planet systems. Even our solar system has measurable deviations! 5

Pre-main Sequence Evolution 10 Protostar+ primordial disk 10 5 yr L star Planet building 10 4 yr 1 10 9 yr Planetary system + debris disk 100 AU 10 7 yr Main sequence Cloud collapse 8,000 5,000 T star (K) 2,000 Adapted from M. Meyer

Three Hypotheses for System Formation Brown Dwarf Hypothesis The Nebular Hypothesis (gravitational instability) Core Accretion Hypothesis 7

Stages of Planet Formation by Core Accretion From dust (~µm-cm) to pebbles (~cm) Myriads of microscopic dust particles merging together Motion of solid objects is strongly coupled to gas From pebbles to boulders (~10m) Many bodies, rapid growth (<100yr), but how? Motion of solid objects is weakly coupled to gas From boulders to planetesimals (>10km) Orderly growth through collisions, mergers, & fragmentation From planetesimals to embryos (~1000km, Moon-sized) Runaway growth of a small number of separated embryos From embryos to terrestrial planet cores (part 1) Gravitational interactions stir and reduce gravity focusing Oligarchic growth up to isolation mass (0.1-10M Earth ) From embryos to terrestrial planet cores (part 2) Weak gravitational perturbations cause their orbits to cross leading to chaotic growth via giant impacts or ejections. Possible accretion of gas and transition to gas giants Adapted from R. Rafikov

Two Questions (its only 15 minutes): How do planetary systems evolve in the Late Stage? Don t know?? Are planetary systems stable? What do you mean? 9

Planetary System Stability Two types: True dynamic instability (ejection) and chaos. Depends upon initial conditions, which we don t know! Since systems are Hamiltonian, if they are in bounded orbits, they must be long term stable and can be regular or chaotic. However, chaotic trajectories can seem bounded for long periods and still be dynamically unstable. Best we can do is ask whether a quasi-periodic planetary system stays quasi-periodic (i.e., stays close to its initial conditions) over lifetimes of the solar system. Answer: It depends. (There is no general solution!) Need lots of numerical integrations and observations! Must be symplectic! 10

Most formation models require ejection of large planets at start of Late Stage, so systems are likely to be dynamically unstable, but not necessarily so. One or more chaotic phases are likely for migration of gas giants, otherwise, for instance, Neptune and Uranus couldn t form. Scattering is needed to form Kuiper belt. Perhaps due to many mean motion resonances. Some Questions: How are eccentricities excited? What is migration mechanism? How are eccentricities later damped? Do mean motion resonances provide an answer? 11

From Moon-size embryos to fully-grown planets Spatially widely separated embryos gravitationally excite each other into crossing orbits Bigger bodies form in catastrophic collisions in about years in the inner Solar System 150 Moon-size bodies Evidence: Earth-Moon system: giant impact about 30 million yrs after Earth formed. Planetary obliquities Chambers 2001??? Final dynamical state? Adapted from R. Rafikov

Violence in the Solar System Mercury large density Mars-sized Earth-impactor created the Moon Giant planet s irregular satellites Saturn s large ring system Uranus s obliquity Neptune s retrograde moon Triton Excitation of Kuiper Belt

Diversity of Possible Planetary Systems Secular evolution may or may not be chaotic. Solar system like (low eccentricity) High-eccentricity orbits Mean Motion Resonances Choreographies Horseshoe orbits Chaotic systems Others? Many questions: How stable is solar system? What causes large eccentricity? How frequent is resonant trapping? Two resonant systems have been observed! 14

GJ 876: Geometry Lee

GJ 876: Radial Velocities Laughlin et al. 2004

GJ 876: Precession Rate Ford 2004

Conclusions for GJ 876 Planet-Planet interaction leads to rapid precession Precession rate constrains masses & orbits Differential migration naturally led to resonant capture into 2:1 mean motion resonance Measured eccentricities demand either: Migration halts shortly after resonant capture Strong eccentricity damping during migration Multiple planet systems provide valuable information about history of planet formation, especially when interactions are observed.

Ups And: Radial Velocities

Secular Evolution of Ups And d c r a a r p r a a r p d c Ford, Lystad, Rasio 2005 see also Malhotra (2002), Chiang et al. (2002)

Some Simulations 21

Conclusions (Eric Ford) Early stages of planet formation are highly uncertain due to complicated physics Oligarchic growth may regulate growth, enforcing a similar intermediate state Late stages of planet formation have simple physics, but can produce a wide variety of outcomes due to chaotic evolution Final state of planetary systems is determined by long-term chaotic orbital evolution

The brown dwarf hypothesis extrasolar planets are simply very low-mass stars that form from collapse of multiple condensations in protostellar clouds distribution of eccentricities and periods of extrasolar planets very similar to distributions for binary stars but: why is there a brown-dwarf desert? how did planets in solar system get onto circular, coplanar orbits? how do you make planets with solid cores, or terrestrial planets? Adapted from S. Tremaine

The nebular hypothesis the Sun and planets formed together out of a rotating cloud of gas (the solar nebula ) gravitational instabilities in the gas disk condense into planets (Kant 1755) Good points: variations might work to form Jupiter, Saturn, extrasolar gas giants Bad points: how do you make Uranus, Neptune, terrestrial planets? Adapted from S. Tremaine

The core accretion hypothesis forming Sun is surrounded by a gas disk (like nebular hypothesis) planets form by multi-stage process: 1. as the disk cools, rock and ice grains condense out and settle to the midplane of the disk chemistry and gas drag are dominant processes 2. small solid bodies grow from the thin dust layer to form km-sized bodies ( planetesimals ) - gas drag, gravity and chemical bonding are dominant processes 3. planetesimals collide and grow gravitational scattering and solar gravity are dominant processes. Molecular chaos applies and evolution is described by statistical mechanics requires growth by ~45 orders of magnitude in mass through ~6 different physical processes! Adapted from S. Tremaine

Challenges of Planet Formation Planetesimals susceptible to very rapid in spiral. Collisions need to result in net accretion. Cores susceptible to rapid inward migration Giant planets must form before gas dissipates Uranus & Neptune must form in less than age of solar system

How to Excite Eccentricities? Gas Disk (Artymowicz 1992, Chiang & Murray 2002, Goldreich & Sari 2003, Papalouizou et al. 2001, Ogilvie & Lubow 2003) Planetesimal Disk (Murray et al. 1998) Planet-Planet Scattering Resonant Interactions (Chiang & Murray 2002, Kley et al. 2004, 2005, Lee & Peale 2002, Nagasawa et al. 2003, Tsiganis et al. 2005, Adams & Laughlin 2006) Secular Perturbations from Heirarchcical Triple Systems (Holman et al. 1997, Ford et al. 2000, Takeda & Rasio 2005) Passing Stars (Laughlin & Adams 1998, Ford et al. 2000, Hurley & Shara 2002, Zakamska & Tremaine 2004) Asymmetric Stellar Jets (Namouni 2005, 2006) Hybrid Scenarios (Marzari et al. 2005, Sandor & Kley 2006) Artwork courtesy of Sylwia Walerys