Name: Lab Partner: Section:

Similar documents
PHYS-1050 Measuring Cosmic Distances Solutions Spring 2013

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

PHYS-1050 Measuring Cosmic Distances Spring 2013

The Cosmic Distance Ladder. Hubble s Law and the Expansion of the Universe!

Astronomy 102 Lab: Hubble Law

Measuring the Age of the Universe

Sun Building Activity 2 The Signature of the Stars

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe

There are three basic types of galaxies:

Galaxies and the Universe

Beyond Our Solar System Chapter 24

Edwin Hubble Discovered galaxies other than the milky way. Galaxy:

Learning Objectives. distances to objects in our Galaxy and to other galaxies? apparent magnitude key to measuring distances?

25/11/ Cosmological Red Shift:

What Supernovas Tell Us about Cosmology. Jon Thaler

Earth Science, 13e Tarbuck & Lutgens

Hubble s Law: Finding the Age of the Universe

The Doppler Effect is the change in frequency observed when a source of sound waves is moving relative to an observer.

Stellar Explosions (ch. 21)

The Bizarre Stellar Graveyard

The Cosmological Redshift. Cepheid Variables. Hubble s Diagram

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Supernova Explosions. Novae

Astronomy 102: Stars and Galaxies Final Exam Review Problems Revision 2

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Stars & Galaxies. Chapter 27 Modern Earth Science

Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Astronomy 102 Lab: Distances to Galaxies

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

Lecture Outlines. Chapter 24. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Spectroscopy in Motion: A Method to Measure Velocity

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star

V. M. Slipher ( ) was an astronomer who worked at Lowell Observatory in Flagstaff, Arizona. In 1909 he began studying the spectrum of the

AST 101 General Astronomy: Stars & Galaxies

PHY 475/375. Lecture 2. (March 28, 2012) The Scale of the Universe: The Shapley-Curtis Debate

1. Convective throughout deliver heat from core to surface purely by convection.

GraspIT Questions AQA GCSE Physics Space physics

Questions on Universe

CHAPTER 28 STARS AND GALAXIES

Chapter 3 Cosmology 3.1 The Doppler effect

The Universe. is space and everything in it.

Chapter 18 The Bizarre Stellar Graveyard

Chapter 14: The Bizarre Stellar Graveyard

7/9. What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less

Galaxies and Hubble s Law

Chapter 18 The Bizarre Stellar Graveyard. White Dwarfs. What is a white dwarf? Size of a White Dwarf White Dwarfs

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1

Part 3: The Dark Energy

Stars and their properties: (Chapters 11 and 12)

For instance, due to the solar wind, the Sun will lose about 0.1% of its mass over its main sequence existence.

Hubble Ultra Deep Space View

The Extragalactic Distance Scale

TA Final Review. Class Announcements. Objectives Today. Compare True and Apparent brightness. Finding Distances with Cepheids

The Expanding Universe

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Chapter 18 Lecture. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 21 Galaxy Evolution. How do we observe the life histories of galaxies?

The Extragalactic Distance Scale

Supernovae in Distant Galaxies

The phenomenon of gravitational lenses

Review Questions for the new topics that will be on the Final Exam

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr

Revision Guide for Chapter 12

IB Physics - Astronomy

Stars and Galaxies 1

DOPPLER EFFECT FOR LIGHT DETECTING MOTION IN THE UNIVERSE HUBBLE S LAW

Big Galaxies Are Rare! Cepheid Distance Measurement. Clusters of Galaxies. The Nature of Galaxies

Exam 4 Review EXAM COVERS LECTURES 22-29

Star Formation. gas cloud protostar Star equilibrium PHYS 162 1

Chapter 15 Galaxies and the Foundation of Modern Cosmology

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

Prentice Hall EARTH SCIENCE

Chapter 15 2/19/2014. Lecture Outline Hubble s Galaxy Classification. Normal and Active Galaxies Hubble s Galaxy Classification

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Fate of Stars. relative to Sun s mass

The Stellar Graveyard Neutron Stars & White Dwarfs

A100 Exploring the Universe: Measuring the Universe. Martin D. Weinberg UMass Astronomy

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Chapter 20 Lecture. The Cosmic Perspective. Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc.

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

29:50 Stars, Galaxies, and the Universe Second Hour Exam November 10, 2010 Form A

Jodrell Bank Discovery Centre

UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages )

THE EXPANSION RATE AND AGE OF THE UNIVERSE

AST1002 Spring 2018 Final Exam Review Questions

Complete Cosmos Chapter 23: Infinity Outline Sub-chapters

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

White dwarfs are the remaining cores of dead stars. Electron degeneracy pressure supports them against the crush of gravity. The White Dwarf Limit

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

Chapter 20 Lecture. The Cosmic Perspective Seventh Edition. Galaxies and the Foundation of Modern Cosmology Pearson Education, Inc.

Astronomy 102: Stars and Galaxies Examination 3 Review Problems

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Active Galaxies and Galactic Structure Lecture 22 April 18th

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

Homework. 1. Hubble. 2. Go to What is the distances for the following things in light years.

Prelab 9: The Hubble Redshift Distance Relation

Transcription:

Chapter 11 Supernovae and the Hubble Constant Name: Lab Partner: Section: 11.1 Purpose Type Ia supernovae will be used to measure the distance to several galaxies. Using published red-shift data, a value of Hubble s constant will be determined. 11.2 Introduction 11.2.1 The Expansion of Space-time and the Hubble Constant The first evidence that the Universe was expanding was discovered in 1912 by V. M. Slipher. Using a spectroscope attached to a 24-inch telescope in Flagstaff, AZ, Slipher noticed that the absorption lines in the spectrum emitted by a distant galaxy had a pronounced wavelength shift toward the red end of the spectrum. At that time, this red-shift was thought to arise from the well-known Doppler Effect. When light is emitted from moving object, the observed wavelength of the light is seen to increase when the motion is away from the observer and the light is said to be red-shifted. When the motion is towards the observer, the wavelength of the light is seen to decrease and is said to be blue-shifted. This effect is analogous to the change in pitch of a whistle on a moving train, which is heard to increase when the train is approaching and decrease when the train is receding. By measuring the change in pitch, one can calculate the speed and direction of a moving train. Similarly, by using Einstein s Theory of Special Relativity, the velocity of a moving 89

object emitting photons can be calculated by measuring the wavelength shift of the observed photons. Slipher observed the spectra of many different galaxies and found that almost all of them were shifted towards the red end of the spectrum. This implied that almost all of the galaxies surrounding our Milky Way were receding. Assuming that the Earth does not sit at a special place in the Universe, astronomers hypothesized that this could be most easily explained if the whole Universe was expanding! Although even today this red-shifting is quite erroneously characterized as due to a velocity of recession, it is now known that it arises instead from the itexpansion of space-time. The red-shifting of light from a distant galaxy is due only to the change in size of the Universe betweenthetimethelightisemittedandthetimeitisobserved. Forexample, iftheuniverse doubles in size during this time then the photon s wavelength will also double, irrespective of the velocity of any apparent motions between galaxies. Another way to consider this is that the photon is stretched as it travels through the expanding Universe. If the Universe were contracting during its journey, the photon would be squeezed and blue-shifted. The red-shifting of light from distant galaxies is then more accurately described as a Cosmological Red-shift. Although it is true that since the Universe is expanding, the distance between galaxies in steadily increasing, it is only in a naive sense that one can say that the galaxies have a relative velocity. All galaxies are effectively at rest with respect to space with regard to this effect, and the red-shift is due to the expansion. The change between the observed and emitted wavelength can be written as: λ = λ observed λ emitted (11.1) This change can be expressed independently of wavelength by dividing through by the wavelength and arriving at a new quantity, z, which is called the red-shift of the galaxy: Notice that z is a pure, dimensionless number. z = λ λ emitted = λ observed λ emitted λ emitted (11.2) Unfortunately, when Edwin Hubble combined his own measurements with Slipher s, he decided to multiply z by the speed of light, c, and called this product the recession velocity as mentioned above: v = c z (11.3) At least for relatively nearby galaxies (nearby on a cosmological scale), the red-shift of a galaxy is linearly proportional to its distance away. i.e., z = h D, where z is the redshift, h is a constant of proportionality and D is the distance. Multiplying this equation by c on both sides (and redefining H 0 c h, which is just another constant) yields: v = H 0 D, (11.4) 90

where H 0 is called Hubble s Constant. 11.2.2 Type Ia Supernova and Galactic Distances A Supernova is a star that explodes violently. A supernova explosion produces enormous amounts of energy. Estimates are that only one or two supernova occur in the Milky Way galaxy each century. Some historical supernovae could be seen during daylight hours. The last supernova to be visible to the naked eye was the SN 1987A supernova which could be seen from the Southern Hemisphere. SN 1987A did not occur in the Milky Way galaxy but in the Large Magellanic Cloud, a galaxy near the Milky Way. Supernova are classified according to their emission lines. Type II supernova have hydrogen in their emission lines in their spectra. Type I supernova have little or no hydrogen in their spectra. This implies that type II supernova are young massive stars that have ample hydrogen in their atmospheres when they explode. Only the other hand, Type II having no hydrogen lines which tells us the star has fused the hydrogen in their atmosphere to other elements and have completed their life cycle. A white dwarf is an earth-size star made mostly of C and O nuclei that is at the end of its life cycle. All of the hydrogen in a white dwarf has been fused into carbon and oxygen. In effect the white dwarf star is a hot ball of carbon and oxygen nuclei and electrons. The gravity of a white dwarf is opposed by electron degeneracy pressure. This is a quantum mechanical effect due to the Pauli exclusion principle. The upper mass limit for a star which can resist gravitation collapse with electron degeneracy pressure is of 1.44 M. This limit is known as Chandrasekhar s Limit. Normally, the white dwarf star will slowly cool off. Type Ia supernova are though to result from the thermonuclear explosion of a white dwarf star. This may sound contradictory since a white dwarf has consumed all of its fuel. If the white dwarf is in a close binary system with a red giant star, the white dwarf can pull material from the larger companion. Then the mass of the white dwarf can suddenly exceed the Chandrasekhar limit. The result is a rapid thermonuclear reaction that fuses the carbon and oxygen into nickel. Within a few seconds, the white dwarf has been completely destroyed. Type Ia supernovae are very uniform and easy to calibrate the light curve since the amount of energy produced when 1.44 M of C and O nuclei fuse. They are useful to astronomers as distance indicators. In this lab, we will use the light curve of Type Ia several supernovae to measure distances to other galaxies. With these distances and red-shift data, we will make an estimate of the Hubble constant. 11.3 Procedure In this lab procedure, we will use the The Supernova Light Curve Fitting Explorer software shown in Fig 11.1. In a web browser, open the class web page, select software on the top 91

menu. Open the The Supernova Light Curve Fitting Explorer link. Figure 11.1: The Supernova Light Curve Fitting Explorer software 1. Check the show horizontal line box. Use the pull down menu to select one of the supernova listed in the data table. 2. If you click and drag the white area of the plot area, you can drag the supernova data points to align with the standard light curve for a type 1a supernova. The data points can be moved in the horizontal and vertical. Align the data points for the best fit of the data to the standard curve. 3. Align the horizontal bar at the peak of the curve. The horizontal bar can be moved by dragging either indicator on the side scales. 4. Input the values of the absolute and relative magnitude from the horizontal bar into the Distance Modulus Calculator box at the bottom. Record the value of the distance in the data table. 5. Calculate the radial speed of the supernova using the value of the red-shift (z) in the table and equation 11.3 6. Using the data in the data table, make a plot with the radial speed on the vertical scale and the distance on the horizontal scale. Be sure to make a proper graph with axis labels and a title. Graph paper is provided at the end of this lab section. 7. Using a ruler and your eye, make a best fit straight line to the data points. Do not 92

Supernova red-shift (z) Radial Speed (km/s) Distance (Mpc) 1995D 0.0066 1999aa 0.0157 1999dq 0.0136 1998aq 0.0045 1999ee 0.0114 1994ae 0.004 Table 11.1: Data Table connect the dots. Determine the slope of the line. The slope of the line is the Hubble constant, H o. Record the value below. H o 11.3.1 Questions 1. The units of the Hubble constant are km/s or km. Since a km and a Mpc are both Mpc s Mpc 1 units of distance, dimensonal analysis tells us the Hubble constant has units of. time Using 1 pc = 3.1 x 10 13 km, Mpc = 10 6 pc, and 1 year = 3.2 x 10 7 second, convert your 1 value of the Hubble constant to units of. Now determine 1 year H 0. What does 1 H 0 tell us about the universe? 11.4 Conclusion Write a conclusion about what you have learned. Include all relevant numbers you have measured with errors. Sources of error should also be included. 93

94