Topics on QCD and Spin Physics

Similar documents
Proton longitudinal spin structure- RHIC and COMPASS results

Nucleon spin and parton distribution functions

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis

Iterative Monte Carlo analysis of spin-dependent parton distributions

Nucleon polarised parton distribution functions

First results of W ± boson production in high-energy polarized p+p collisions at RHIC at BNL

Fundamental Open Questions in Spin Physics

Gluon Polarization Measurements at STAR

Polarizing Helium-3 for down quark spin enrichment. Nigel Buttimore

Selected topics in High-energy QCD physics

Impact of sidis data on ppdfs. Rodolfo Sassot Buenos Aires

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010

Nucleon Valence Quark Structure

arxiv: v4 [hep-ph] 9 Jul 2015

The Role of Heavy Quarks in Light Hadron Fragmentation. HUGS Manuel Epele Instituto de Física La Plata

Sea Quark and Gluon Polarization in the Nucleon

Selected results and future prospects of the high-energy polarized p+p program at RHIC at BNL

Probing nucleon structure by using a polarized proton beam

Central Questions in Nucleon Structure

Hadron Mass Effects on Kaon Multiplicities: HERMES vs. COMPASS

Recent Development in Proton Spin Physics

Global QCD Analysis of Fragmentation Functions and Possible Medium Modifications

Precision Studies of the Proton s Helicity Structure at an EIC

Goodbye to Large G? Marek Karliner. Cambridge University and Tel Aviv University. with John Ellis, hep-ph/ ph/

Spin Structure of the Nucleon: quark spin dependence

Overview of Science Goals, Golden Measurements and Implications for the Energy and Luminosity Reach of the EIC

Flavor Decomposition

Status of Deeply Inelastic Parton Distributions

New JAM global analysis of spin-dependent PDFs

Transverse SSA Measured at RHIC

Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC

Nucleon Spin. Tyler Corbett

A SPIN ON THE PROTON FOR SEEKING NUCLEON STRUCTURE. Nigel Buttimore

Polarized Structure Functions

Studying Evolution with Jets at STAR. Renee Fatemi University of Kentucky May 28 th, 2015

Flavor decomposition of collinear PDFs and FFs

Future prospects of di-jet production at. forward rapidity constraining Δg(x) at low x in. polarized p+p collisions at RHIC

Highlights from RHIC Spin Program

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR

Nucleon Spin Structure from Confinement to Asymptotic Freedom

Spin-dependent PDFs at large x

Generalizing the DGLAP Evolution of Fragmentation Functions to the Smallest x Values

Spin Transfer Studies for Λ c+ c+ Production at RHIC

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

Nucleon Spin Structure: Overview

QCD Analysis and Calculation of Fragmentation Functions from Hadron Multiplicities. Patricia Francisconi

Nucleon spin in perspective

COMPASS results on inclusive and semi inclusive polarised DIS

Polarized parton distributions: present status and prospects

JAMboree. Theory Center Jamboree Jefferson Lab, Dec 13, Pedro Jimenez Delgado

Recent Progress on the Determination of Nuclear Parton Distribution Functions

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion

Phenomenological applications of QCD threshold resummation

Prospects for Detecting Local Parity Violating Effects in Quark Fragmentation at. and

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Measurements with Polarized Hadrons

Spin Structure with JLab 6 and 12 GeV

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Lectures on the Longitudinal Spin Structure of the Nucleon. Marco Stratmann

Parton Uncertainties and the Stability of NLO Global Analysis. Daniel Stump Department of Physics and Astronomy Michigan State University

Outline: Introduction Quantum ChromoDynamics (QCD) Jet algorithms Tests of QCD QCD analyses at HERA extraction of the proton PDFs

PoS(EPS-HEP2011)301. COMPASS results on gluon polarisation. Luis SILVA LIP Lisbon

Nuclear PDFs: latest update

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro

Summary of Workshop on Spin of Nucleons from Low to High Energy Scales

PoS(DIS2018)216. W Measurement at PHENIX. Chong Kim

Spin Physics at RHIC. Particle Physics Phenomenology at KEK March 2, 2004 Yuji Goto (RIKEN/RBRC)

The transition from pqcd to npqcd

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

Global analysis of parton densities and fragmentation functions

陽子スピンの分解 八田佳孝 ( 京大基研 )

Phenomenology at low Q 2

Christine Aidala Columbia University Transversity 2004, Trento June 14, 2004

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Nucleon Spin Structure Longitudinal Spin of the Proton. HUGS Summer School Jefferson National Laboratory June 2, 2011 Lecture 5

Quarkonium Production at J-PARC

How does the proton spin?

Collinear Distributions from Monte Carlo Global QCD Analyses

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309

arxiv: v1 [hep-ex] 4 Jan 2011

Scale dependence of Twist-3 correlation functions

arxiv:hep-ph/ v1 6 Jul 1998

LHC Collider Phenomenology

Constituent Quarks and the Gluonic Contribution to the Spin of the Nucleon

Gluon Spin Basics. The gluon helicity distribution in the nucleon will soon be measured... What are the foundations of this physics?

4/ Examples of PDF Uncertainty. May 2005 CTEQ Summer School 25

Zhong-Bo Kang Los Alamos National Laboratory

Parton-hadron duality and PDF fits

QCD Precision Tests in Deeply Inelastic Scattering

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Cross section for quasi-real photoproduction of charged hadrons with high pt in μ + -d scattering

Physics of the Proton Spin Problem. Anthony W. Thomas

Parton-parton luminosity functions for the LHC

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016

QCD Factorization and PDFs from Lattice QCD Calculation

Spin 2014 Report. December 16,

Open Issues in DIS The High Energy Perspective

Structure of Generalized Parton Distributions

The Resolution of the Proton Spin Crisis

Transcription:

Topics on QCD and Spin Physics (sixth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS 21, JLAB June 21

Spin (revisited)? naive quark spin parton spin QCD parton spin polarized DIS:? EMC experiment: not the naive picture strange quarks polarization? gluon polarization? from moments to parton densities: first moments sum rules parton densities more insight flavor symmetry & models more observables!

More spin dependent observables: inclusive DIS g p 1 (x, Q2 ) g n 1 (x, Q 2 ) unknowns u, u, d, d, s, s, g g N 1 (x, Q 2 ) = + q ( ± 1 12 qns 3 + 1 36 qns 8 + 1 9 Σ ) e 2 q α s 2π g C g. d d ln Q 2 qns = α s 2π P 1 qq q NS d d ln Q 2 ( Σ g ) = α s 2π ( P 1 qq 2fP 1 qg P 1 gq P 1 gg ) ( Σ g ( 1+ α ) s 2π C q q NS 3 ( u + ū) ( d + d ) q NS 8 ( u + ū)+ ( d + d ) 2( s + s) Σ ( u + ū)+ ( d + d ) +( s + s) )

More spin dependent observables: SIDIS asymmetries N = p, D, He h = π ±,K ±,h ± + α s(q 2 ) 2π A Nh 1 (x, Q 2 ) Z g Nh 1 (x, z, Q 2 )= q,q e 2 i Z Z dz gn h 1 (x, z, Q 2 ) dz F Nh 1 (x, z, Q 2 ) { qi (x, Q 2 )D h q i (z, Q 2 ) [ q i C ij D h q j + q i C ig D h g + g C gj D h q j ] LO NLO D 1 = D π+ u = D π+ d D 2 = Dd π+ = Du π+ D 3 = Ds π+ = Ds π+ 2g π+( ) 1p 4 9 ( u + u) Dπ 1(2) + 1 9 ( d + d) Dπ 2(1) + 1 9 ( d 4 u) (Dπ 1(2) Dπ 2(1) )

More spin dependent observables: polarized pp collisions A LL d σ dσ dσ++ dσ + dσ ++ + dσ + d σ = ab dx a dx b f a (x a,q 2 ) f b (x b,q 2 ) jets d ˆσ ab (x a,x b,p T ). d σ = ab dx a dx b dz f a (x a,q 2 ) f b (x b,q 2 )D h c (z, Q 2 ) d ˆσ abc (x a,x b, z, p T ) hadrons numerically involved: Mellin tricks

DSSV helicity distributions: D.de Florian, R.S., M. Stratmann, W. Vogelsang 28 inclusive DIS data q + q SIDIS data flavor separation RHIC data g experiment data type data points EMC, SMC, DIS 34 COMPASS DIS 15 E142, E143, E154, E155 DIS 123 HERMES DIS 39 HALL-A DIS 3 CLAS DIS 2 SMC SIDIS h ± 48 HERMES SIDIS h ± 54 SIDIS, π ± 36 SIDIS, K ± 27 COMPASS SIDIS, h ± 24 PHENIX 2 GeV pp, π 2 PHENIX 62 GeV pp, π 5 STAR 2 GeV pp, jet 19 TOTAL: 467 DIS SIDIS RHIC 5% 4% 1%

DSSV helicity distributions: parameterization x( q + q)(x, Q 2 )=N q x α q (1 x) β q (1 + γ q x + ηq x) x q(x, Q 2 )=N q x α q (1 x) β q (1 + η q x) x g(x, Q 2 )=N g x α g (1 x) β g (1 + η g x) Q 2 = 1GeV 2 NLO evolution α s MRST α u = α u+u α d = α d+d s = s ( u 1 + u 1 ) ( d 1 + d 1 ) = (F + D)[1 + ɛ SU(2) ] ( u 1 + u 1 )+( d 1 + d 1 ) 2( s 1 + s 1 ) = (3F D)[1 + ɛ SU(3) ]

DSSV helicity distributions: scheme A NLO MS LL (DSSV ) A EXP LL g1 NLO MS (DSSV ) F1 NLO MS (MRST ) AEXP 1 not unique : F 1 (x, Q 2 ) from data from parameterization from fit just g 1 (x, Q 2 ) F 2 (x, Q 2 ) and R(x, Q 2 ) approximation: g NLO MS 1 F NLO MS 1 + O( 1 Q 2, α2 s)=a 1

experiment process N data χ 2 DSSV helicity distributions: very good! no significant tension χ 2 /d.of..88 EMC [?] DIS (p) 1 3.9 SMC [?] DIS (p) 12 3.4 SMC [?] DIS (d) 12 18.4 COMPASS [?] DIS (d) 15 8.1 E142 [?] DIS (n) 8 5.6 E143 [?] DIS (p) 28 19.3 E143 [?] DIS (d) 28 4.8 E154 [?] DIS (n) 11 4.5 E155 [?] DIS (p) 24 22.6 E155 [?] DIS (d) 24 17.1 HERMES [?] DIS (He) 9 6.3 HERMES [?] DIS (p) 15 1.5 HERMES [?] DIS (d) 15 16.9 HALL-A [?] DIS (n) 3.2 CLAS [?] DIS (p) 1 5.9 CLAS [?] DIS (d) 1 2.5 SMC [?] SIDIS (p, h + ) 12 18.7 SMC [?] SIDIS (p, h ) 12 1.6 SMC [?] SIDIS (d, h + ) 12 7.3 SMC [?] SIDIS (d, h ) 12 14.1 HERMES [?] SIDIS (p, h + ) 9 6.4 HERMES [?] SIDIS (p, h ) 9 4.9 HERMES [?] SIDIS (d, h + ) 9 11.4 HERMES [?] SIDIS (d, h ) 9 4.5 HERMES [?] SIDIS (He, h + ) 9 4.7 HERMES [?] SIDIS (He, h ) 9 6.9 HERMES [?] SIDIS (p, π + ) 9 9.6 HERMES [?] SIDIS (p, π ) 9 4.9 HERMES [?] SIDIS (d, π + ) 9 9.4 HERMES [?] SIDIS (d, π ) 9 19.5 HERMES [?] SIDIS (d, K + ) 9 6.2 HERMES [?] SIDIS (d, K ) 9 5.8 HERMES [?] SIDIS (d, K + +K ) 9 3.4 COMPASS [?] SIDIS (d, h + ) 12 6.2 COMPASS [?] SIDIS (d, h ) 12 12. PHENIX [?] pp (2 GeV, π ) 1 14.2 PHENIX [?] pp (2 GeV, π ) 1 7.1 [13.8] 1 PHENIX [?] pp (62 GeV, π ) 5 3.1 [2.8] a STAR [?] pp (2 GeV, jet) 1 8.8 STAR (prel.) [?] pp (2 GeV, jet) 9 6.9 TOTAL: 467 392.6

DSSV helicity distributions: DIS data 1.75.5.25 EMC SMC E-143 E-155 HERMES CLAS A p 1 1.75.5 COMPASS SMC E-143 E-155 HERMES CLAS A d 1.25 1-2 DSSV DNS.4.2 E-142 E-154 HERMES (Helium-3) HALL A A n 1 -.2 1-2 1-1 1-1 1-1 1 x new compass data also in good agreement

DSSV helicity distributions: SIDIS data.8.6.4.2 -.2.8.6.4.2 -.2.8.6.4.2 -.2.8.6.4.2 -.2 SMC A h+ 1 p HERMES A h+ 1 p HERMES A!+ 1 p HERMES A h+ 1 He COMPASS A h+ 1 d SMC A h- 1 p HERMES A h- 1 p HERMES A!- 1 p HERMES A h- 1 He COMPASS A h- 1 d SMC A h+ 1 d HERMES A h+ 1 d HERMES A!+ 1 d HERMES A K+ 1 d SMC A h- 1 d HERMES A h- 1 d HERMES A!- 1 d HERMES A K- 1 d 1-2 1 1-2 1 1-2 1 1-2 1 DSSV DNS (DSS FFs) x Bj x Bj new compass data also in good agreement x Bj x Bj

DSSV helicity distributions: RHIC data.2.1 A! LL -.1 -.2.5 A jet LL -.5 p T [GeV] 2 4 6 8 PHENIX PHENIX (prel.) STAR STAR (prel.) DSSV DSSV # 2 =1 DSSV # 2 /# 2 =2% 1 2 3 p T [GeV] important constraint on gluons despite large uncertainties

Not included no NLO yet...!g/g.5 COMPASS 2-had, Q 2 <1 GeV 2 COMPASS charm HERMES (prel.) SMC -.5 Q 2 =1 GeV 2 Q 2 =1 GeV 2 1-1 x

DSSV helicity distributions: utot dtot.3.2 x(!u+!u ) very well constrained.1 agrees with DIS-only fits -.1 -.2 x(!d+!d ) x valence-like behavior

DSSV helicity distributions: ubar.4.2 x!u 41 χ 2 1 # dis sidis pp su 1 4 -.2 -.4 DSSV DNS GRSV 41 x DSSV! 2 =1 -.5.5 -.5.5 DSSV!s! 2 =2%!s %#!, u 1,[.1 1] -.5 small and positive? 1 sidis driven 1 large uncertainties 4

DSSV helicity distributions: ubar.4.2 x!u 1 dis sidis pp su χ 2 # 1 sidis kaon pion h -.2 DSSV DNS.5 DSSV! 2 =1!s -.4!s GRSV DSSV! 2 =2% small and positive? large uncertainties 1 -.5.5 x 1 -.5.5!s sidis driven %#!, u 1,[.1 1]

DSSV helicity distributions: dbar x!d.4.2 χ 2 1!u sidis kaon pion h -.2 -.4 larger and negative? x -.2!d d 1,[.1 1] h/pi tension? larger uncertainties

DSSV helicity distributions: SU(2) breaking.1 x(u -d ).5 -.5 DSSV DNS GRSV (val)!qsm CTEQ x(d -u ) DSSV! 2 =1 DSSV! 2 /! 2 =2% 1-3 1-2 1-1 1 x breaking similar to unpolarized case similar patterns in many models

DSSV helicity distributions: strangeness.4.2 x!s # # )*( )*( (*)*( (*)*( ++ ++ (, (, # (*)*( -./ +*/ 1 -.2 -.4 $%& %& 1-2 1-1 $%& $%& %& %&!(!(!( $%& %&!( always though to be negative... mainly determined by sidis (kaon) becomes negative at small x? # #

DSSV helicity distributions: gluons x!g DSSV DNS GRSV DSSV! 2 =1 DSSV! 2 =2%.3.2 41! 2 45 all data sets x-range:.5-.2 PHENIX STAR SIDIS DIS 15! 2 i 1.1 4 5 395 (a) (b) GRSV maxg GRSV ming -.1 -.2 -.2.2 g 1, [.5-.2 ] -.2.2 g 1, [.5-.2 ] measured region 1-2 1-1 1 g 1,[.5.2] RHIC region.2.5 g dx [. 1.] [.1 1.] best fit χ 2 =1 χ 2 /χ 2 = 2% u + ū.813.793 +.11.12.793 +.28.34 d + d -.458 -.416 +.11.9 -.416 +.35.25 ū.36.28 +.21.2.28 +.59.59 d -.115 -.89 +.29.29 -.89 +.9.8 s -.57 -.6 +.1.12 -.6 +.28.31 g -.84.13 +.16.12.13 +.72.314 Σ.242.366 +.15.18.366 +.42.62 low x extrapolation

QCD and Spin Physics a collection of topics that highlight the link between theory and experiment many surprises, lively discussions, still learning... pqcd as a tool to connect phenomena relates experiment to the underlying protagonists step by step approach: changing picture just the first steps...