Tools of Modern Astronomy

Similar documents
1 Astronomy: The Original Science

Preteach. Target Reading Skill. Build Background Knowledge

Chapter 6 Telescopes: Portals of Discovery. Agenda. How does your eye form an image? Refraction. Example: Refraction at Sunset

Measuring Light waves

Telescopes. Telescopes Key Concepts. glass

ANSWER KEY. Stars, Galaxies, and the Universe. Telescopes Guided Reading and Study. Characteristics of Stars Guided Reading and Study

Chapter 6 Telescopes: Portals of Discovery

Foundations of Astronomy 13e Seeds. Chapter 6. Light and Telescopes

1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must.

Writing very large numbers

Properties of Thermal Radiation

Refraction is the bending of light when it passes from one substance into another. Your eye uses refraction to focus light.

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 5

TELESCOPES POWERFUL. Beyond the Book. FOCUS Book

Optics and Telescope. Chapter Six

AST 102 chapter 5. Radiation and Spectra. Radiation and Spectra. Radiation and Spectra. What is light? What is radiation?

Summary. Week 7: 10/5 & 10/ Learning from Light. What are the three basic types of spectra? Three Types of Spectra

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Chapter 6 Light and Telescopes

CHAPTER 28 STARS AND GALAXIES

Astronomy 1 Fall 2016

How does your eye form an Refraction

How does your eye form an Refraction

3. c 4. a 5. f 6. b 7. e. 1. Stars are bright and hot. 2. Distances between stars are measured in light-years. 3. The sun is a yellow star.

Space Physics Questions CfE

Astronomical Tools. Optics Telescope Design Optical Telescopes Radio Telescopes Infrared Telescopes X Ray Telescopes Gamma Ray Telescopes

PHYS 160 Astronomy Test #2 Fall 2017 Version A

Telescopes have Three Powers

Coursework Booklet 2

Astronomy. Optics and Telescopes

Light and Telescopes

Telescopes: Portals of Discovery Pearson Education, Inc.

What are the most important properties of a telescope? Chapter 6 Telescopes: Portals of Discovery. What are the two basic designs of telescopes?

Chapter 5: Telescopes

Chapter 3 Telescopes 2/19/2014. Lecture Outline. 3.1 Optical Telescopes. 3.1 Optical Telescopes. Units of Chapter Optical Telescopes

Name Class Date. For each pair of terms, explain how the meanings of the terms differ.

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Prentice Hall EARTH SCIENCE

CASSEGRAIN TELESCOPE

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Useful Formulas and Values

TWO SMALL PIECES OF GLASS A Space Science Program for Grades 5-12

Chapter 26. Objectives. Describe characteristics of the universe in terms of time, distance, and organization

Zoink Questions: Tools of Astronomy

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Telescopes (Chapter 6)

Ground- and Space-Based Telescopes. Dr. Vithal Tilvi

Lecture Fall, 2005 Astronomy 110 1

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline

Chapter 18: Studying Space Astronomy: The Original Science

AST 101 Intro to Astronomy: Stars & Galaxies

Chapter 6 Lecture. The Cosmic Perspective. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 23. Light, Astronomical Observations, and the Sun

Star Systems and Galaxies

Chapter 6 Lecture. The Cosmic Perspective Seventh Edition. Telescopes Portals of Discovery Pearson Education, Inc.

Chapter 5. Telescopes. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ASTR 1120 General Astronomy: Stars & Galaxies

Chapter 5 Telescopes

ASTR 2310: Chapter 6

Earth s Atmosphere & Telescopes. Atmospheric Effects

Name Date Class _. Please turn to the section titled The Nature of Light.

Grade 5. Practice Test. Telescopes: An Introduction Powerful Telescopes

On to Telescopes. Imaging with our Eyes. Telescopes and cameras work much like our eyes. ASTR 1120 General Astronomy: Stars & Galaxies !

Telescopes. Optical Telescope Design. Reflecting Telescope

Telescopes and estimating the distances to astronomical objects

Astronomy 1504/15014 Section 20

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines

Buy-back points tallied and added: 750 points bought-back. Last Withdrawal date: this friday, Oct 31st.

PhysicsAndMathsTutor.com 1

Learning aim B: Astronomical measurements and observations

Lecture Outline: Chapter 5: Telescopes

The Treptow Giant Telescope in Berlin is the longest moveable refracting telescope on Earth. Some of its properties are summarised below:

How do telescopes "see" on Earth and in space?

Phases of ma*er strongly depend on temperature

Next Homework Due Oct. 9. Coming up: The Sun (Chapter 10)

The well-composed image was recorded over a period of nearly 2 hours as a series of 30 second long, consecutive exposures on the night of October 5.

Doppler Shifts. Doppler Shift Lecture-Tutorial: Pgs Temperature or Heat? What can we learn from light? Temp: Peak in Thermal Radiation

Telescopes, Observatories, Data Collection

Astronomy-part 3 notes Properties of Stars

Why Use a Telescope?

Next Homework Due March 6. Coming up: The Sun (Chapter 10)

The Formation of the Solar System

@astro_stephi. Telescopes. CAASTRO in the Classroom: National Science Week Stephanie Bernard, University of Melbourne

How to Measure and Record Light Spectrograph. The Photographic plate now obsolete Turbulence

Modern Astronomy Review #1

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller.

Astro 1010 Planetary Astronomy Sample Questions for Exam 3

How do they work? Chapter 5

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #12, Monday, February 15 th

= λ. Topics for Today. Clicker Q: Radio Waves. Radios. Light Pollution. Problems in Looking Through Our Atmosphere

Chapter 26 Section 1 pages Directed Reading Section: Viewing the Universe

Astronomy Universe: all of space and everything in it

CHAPTER 4 STARS, GALAXIES & THE UNIVERSE


Telescopes. Some of these are made into satellites and put into the atmosphere

Telescopes. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. Key Ideas:

Directed Reading. Section: Viewing the Universe THE VALUE OF ASTRONOMY. Skills Worksheet. 1. How did observations of the sky help farmers in the past?

UNIT E: SPACE EXPLORATION

It will cover material up to, but not including, Will consist of a few short-answers, 1-2 short essay, and a few problems + extra credit.

Transcription:

Tools of Modern Astronomy Are Those Stars Really a Group? 1. Cut ten pieces of thread to different lengths between 5 cm and 25 cm. Tape a 1- cm plastic foam ball to the end of each piece of thread. 2. Obtain a piece of cardboard about 50 cm by 50 cm. Tape the free ends of the thread pieces to various points on the cardboard. 3. Turn the cardboard over so the balls hang down. While your partner holds the cardboard horizontally, look at the balls from the side. 4. Imagine that the balls are stars in a constellation. With one eye closed, sketch the pattern the balls make. Think It Over Observing Can you tell which balls are farther away and which are closer? Do you think you can tell how close to one another the stars in a constellation are? What do telescopes do? Why do astronomers use spectrographs? Reading Tip Before you read, rewrite the main headings of the section as how, why, or what questions. Before the Civil War, thousands of enslaved African Americans fled north to freedom. Traveling in secret by night, they looked to the stars for direction. They told one another to follow the drinking gourd the star pattern that points to the North Star. Most Americans today call this pattern the Big Dipper. Patterns of stars in the sky are called constellations. Stars in a constellation can look as if they are close together, even though they are at very different distances from Earth. For example, the star at the end of the handle in the Big Dipper is about twice as far from Earth as most of the other stars in the Big Dipper. So the stars in a constellation are not, in fact, all close together. Constellations are just patterns formed by stars that happen to be in the same direction in the sky. Key Terms constellation radio telescope observatory spectrograph file:///d /SciExp/generic/0130643777/ch8/ch8_s1_0.html10/21/2009 1:33:04 PM

Looking at Stars The stars in constellations appear as points of light. In fact, stars are huge spheres of hot, glowing gas, like the sun. Visible light is only one type of electromagnetic radiation given off by stars. Stars also give off radiation that you can t see. For example, some stars give off radiation in the form of radio waves. These waves are like the ones that carry signals to radios and televisions. Electromagnetic Waves Astronomers use telescopes to observe stars and learn more about them. Many telescopes produce images using visible light. However, much of modern astronomy is based on detection of other types of electromagnetic radiation. Most telescopes collect and focus different types of electromagnetic radiation from stars, including visible light. Developement of Modern Telescopes Visible Light Telescopes In 1609, Galileo used a simple refracting telescope to look at objects in the sky. Among the objects he saw were the moons of the planet Jupiter, sun spots, and the terrain of the moon. Recall that a refracting telescope uses convex lenses to gather a large amount of light and focus it onto a small area. Optical Telescopes Galileo s telescope, like the refracting telescope shown below, used two lenses an objective lens and an eyepiece lens. When light passes through the objective lens, the lens focuses the light at the focal point of the lens. The distance from the focal point to the objective lens is the focal length of the objective lens. The larger the objective lens, the more light the lens can collect. This makes it easier for astronomers to see faint objects. The eyepiece lens is also a convex lens. It has a focal point that coincides with that of the objective lens. file:///d /SciExp/generic/0130643777/ch8/ch8_s1_1.html (1 of 3)10/21/2009 1:33:05 PM

Refracting Telescope A refracting telescope uses an objective lens to focus the light rays from an image, which can be seen with the eyepiece lens. Both lenses are convex lenses. Isaac Newton built the first reflecting telescope in 1668. As you can see in the diagram below, a reflecting telescope uses a mirror instead of an objective lens. Like the lenses in a refracting telescope, the mirror in a reflecting telescope focuses a large amount of light onto a small area. The larger the mirror, the more light the telescope can collect. The largest visible light telescopes are now all reflecting telescopes. Reflecting Telescope In a reflecting telescope, a mirror focuses a large amount of light onto a small area. Radio Telescopes Devices used to detect radio waves from objects in space are called radio telescopes. Most radio telescopes have curved, reflecting surfaces. These surfaces can be several hundred meters in diameter. They focus radio waves the way the mirror in a reflecting telescope focuses light waves. Radio telescopes concentrate the faint radio waves from outer space onto an antenna like that on a radio. As with visible light telescopes, the larger a radio telescope is, the more radio waves it can collect. Locating Radio Waves You can use an umbrella to focus radio waves. 1. Line the inside of an umbrella with aluminum foil. 2. Turn on a small radio and tune it to a station. 3. Move the radio up and down along the umbrella handle. Find the position where the station is clearest. Radio waves reflecting off the foil focus at this point. Tape the radio to the handle. 4. Hold the umbrella at different angles. At which angle is the station the clearest? Inferring In which direction do you think the radio station is located? Explain. file:///d /SciExp/generic/0130643777/ch8/ch8_s1_1.html (2 of 3)10/21/2009 1:33:05 PM

Other Telescopes Some telescopes detect infrared radiation, which has longer wavelengths than visible light. There are also telescopes that detect the shortest wavelengths ultraviolet radiation, X- rays, and gamma rays. Observing Use a telescope to look at the night sky. Make a list of your answers to these questions. 1. Can you distinguish a planet from a star using a telescope? If so, how? 2. How do the objects you view in the night sky differ? How are they the same? Record their colors, their brightnesses, and anything else you observe. 3. If the moon is visible, what do you see when you look at the moon s surface? 4. Can you locate an object that scientists have placed in the sky? How can you tell that it is not natural? file:///d /SciExp/generic/0130643777/ch8/ch8_s1_1.html (3 of 3)10/21/2009 1:33:05 PM

Observatories A building that contains one or more telescopes is called an observatory. Most large observatories are located on mountaintops. Why have astronomers built the largest visible light telescopes on the tops of mountains? Earth s atmosphere makes objects in space look blurry. The sky on some mountaintops is clearer and is not brightened by city lights. The best observatory site on Earth is probably the top of Mauna Kea, an ancient volcano on the Island of Hawaii in the Pacific Ocean. Mauna Kea is so tall 4,200 meters above sea level that it is above 40 percent of Earth s atmosphere. The sky there is very dark at night, and many nights are free of clouds. The McDonald Observatory in the Davis Mountains of southwest Texas has four operating telescopes. The largest is the Hobby-Eberly reflecting telescope. It sits on Mount Fowlkes, about 2 kilometers above sea level. It collects light on a mirror that is over 9 meters in diameter! To collect data from visible light telescopes on Earth, astronomers must sometimes stay awake all night. Radio telescopes, however, can be used 24 hours a day and do not have to be on mountaintops. file:///d /SciExp/generic/0130643777/ch8/ch8_s1_2.html10/21/2009 1:33:05 PM

Satellites Most ultraviolet radiation, X-rays, and gamma rays are blocked by Earth s atmosphere. To detect these wavelengths, astronomers have placed telescopes on satellites. The Hubble Space Telescope is a reflecting telescope with a mirror 2.4 meters in diameter. Because it is above the atmosphere, its images of stars in visible light are about seven times more detailed than the best images from telescopes on Earth. The Hubble Space Telescope can also collect ultraviolet and infrared radiation. The Chandra X-ray Observatory, similar in size to Hubble, makes images in the X-ray portion of the spectrum. The Hubble Telescope file:///d /SciExp/generic/0130643777/ch8/ch8_s1_3.html10/21/2009 1:33:06 PM

Spectrographs Most large telescopes today have spectrographs. A spectrograph (spek truh graf) breaks the light from an object into colors and photographs the resulting spectrum. Astronomers use spectrographs to get information about stars, including their chemical compositions and temperatures. Chemical Compositions Chemical elements in a star s atmosphere absorb light from the star. Each element absorbs light at different wavelengths, and each absorbed wavelength appears as a dark line on a spectrum. Just as each person has a unique set of fingerprints, each chemical element has a unique set of such lines. By comparing a star s spectrum with the known spectrums of different elements, such as those shown below, astronomers can infer which elements are found in a star. Spectral Fingerprints Line Spectrums Astronomers can use line spectrums to find the temperatures of stars. Temperatures Most stars have a chemical composition similar to the sun, about 73% hydrogen, 25% helium, and 2% other elements. The amount of energy each of these elements absorbs depends on the temperature of the star. Because of this, stars at different temperatures produce different line spectrums. By comparing a star s spectrum with the known spectrums of elements at different temperatures, astronomers can infer how hot the star is. Hydrogen, for example, produces very strong spectral lines when it is at about 10,000 degrees Celsius. If astronomers do not see a strong hydrogen line on a spectrum, this does not mean there is no hydrogen in the star. It just means that the star is either cooler or hotter than 10,000 degrees Celsius. file:///d /SciExp/generic/0130643777/ch8/ch8_s1_4.html (1 of 2)10/21/2009 1:33:06 PM

Inferring The lines on the spectrums below are from three different stars. Each of these star spectrums is made up of an overlap of spectrums from the individual elements shown in Line Spectrums. In Star A, which elements have the strongest lines? Which are the strongest in Star B? In Star C? file:///d /SciExp/generic/0130643777/ch8/ch8_s1_4.html (2 of 2)10/21/2009 1:33:06 PM

1. For what purpose are most telescopes designed? 2. What can astronomers tell from looking at a star s spectrum? 3. What does a spectrum without strong hydrogen lines tell you about a star s temperature? 4. Thinking Critically Applying Concepts Why are images from the Hubble Space Telescope clearer than images from telescopes on Earth? Using the star charts in Appendix G, try to locate constellations in the night sky. (Hint: Remember that you may be looking at a constellation upside down. Also, light conditions may affect how many stars you can see.) Sketch the constellations you can locate and compare them with the ones your classmates saw. Now choose one constellation and research the myths or legends that gave it its name. Find as many stories as you can about your constellation and make notes about them. file:///d /SciExp/generic/0130643777/ch8/ch8_s1_5.html10/21/2009 1:33:07 PM