GY 112 Lecture Notes Evolution of the Earth's Atmosphere and Hydrosphere

Similar documents
EARTH TAKES SHAPE 1. Define all vocabulary words. Crust: The thin and solid outermost layer of the Earth above the mantle. Mantle: The layer of rock

Lecture 20. Origin of the atmosphere (Chap. 10) The carbon cycle and long-term climate (Chap. 8 of the textbook: p )

CRITICAL THINKING ACTIVITY: INTERPRETING THE GOLDILOCKS EFFECT (1)

Activity 1-2: Origin of the Earth

Chapter 1: Introduction to Earth Science

The greenhouse effect

Effect of Life on the Atmosphere: The Rise of Oxygen and Ozone

Canadian Geography 1202

BIOGEOCHEMICAL CYCLES

The Cycling of Matter. Day 1

Chapter Introduction. Chapter Wrap-Up. Explosion

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Section 4. The Biosphere and the Evolution of the Atmosphere. What Do You See? Think About It. Investigate. Learning Outcomes

The History of the Earth

Origin of the Atmosphere. Note: No free oxygen at this point!!! (A) (B)

Earth s Formation: 4.6 Billion Years ago

Our Planet Earth. Earth Systems

Name Period Date L.O: SWBAT DESCRIBE THE PROPERTIES OF THE ATMOSPHERE.(

PTYS 214 Spring Announcements Midterm #4: two weeks from today!

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE. Review next time? Exam next week

1. What is the definition of uniformitarianism? 2. What is the definition of organic? 4. What is the definition of inorganic?

The Earth s Structure

History of Life on Earth

GY 112 Lecture Notes Archean Geology

Evolution of the Atmosphere: The Biological Connection

Earth Science. Explain how Earth's biogeochemical cycles create a balance of materials. Examine the importance of biogeochemical cycles.

The Earth System Connections among the great spheres

Phys 214. Planets and Life

THIRD GRADE WATER 1 WEEK LESSON PLANS AND ACTIVITIES

National Science Standards Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8

2) Earthquakes and volcanoes are most alike because a) Both can occur at the midlines of tectonic plates b) Both can occur as a result of transform

Earth systems the big idea guiding questions Chapter 1 & 2 Earth and Earth Systems review notes are in purple

1 Earth s Oceans. TAKE A LOOK 2. Identify What are the five main oceans?

The Earth Fast Facts. Outline. The Solar System is Ours! Astronomy 210. Section 1 MWF Astronomy Building

Sustainable Ecosystems

GY 111 Lecture Note Series Sedimentary Environments 2: Rivers and Deltas

Carbon Cycling Internal

Lecture Outlines PowerPoint. Chapter 1 Earth Science, 12e Tarbuck/Lutgens

Earth s history can be broken up into 4 time periods: Precambrian Paleozoic Era Mesozoic Era Cenozoic Era

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Physical Oceanography

Earth s Atmosphere. Atmospheric Composition 78% Nitrogen 21% Oxygen 1 % Argon, 0.03% Carbon dioxide, Water. Recall the Electro-Magnetic (EM) Spectrum

Biogeochemical cycles

AT 350 EXAM #1 February 21, 2008

Concepts and Challenges Physical Science. New York Intermediate Level Science Core Curriculum

The Sun and Planets Lecture Notes 6.

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth

First, an supershort History of the Earth by Eon

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

page - Lab 13 - Introduction to the Geology of the Terrestrial Planets

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Outline 9: Origin of the Earth: solids, liquids, and gases

2010 Pearson Education, Inc.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Evolution of Earth Environments Bio-Geo-Chemical Cycling

The Origin of Life on Earth

Our Planet Earth. I nteractions of Earth Systems

Earth Science Review Ch 1 & 2. Chapter 1 - Introduction to Earth Science

The Earth is surrounded by a blanket of air, which we call the atmosphere. It reaches over 560 kilometers

Astro 1010 Planetary Astronomy Sample Questions for Exam 4

TEACHER BACKGROUND KNOWLEDGE. Surface Processes: Weathering and Erosion

Chapter Introduction. Chapter Wrap-Up. Earth Systems

1. The geosphere consists of three major layers: the,, and.

Thermal / Solar. When air is warmed it... Rises. Solar Energy. Evaporation. Condensation Forms Clouds

Crosswalk of Georgia Performance Standards & Georgia Standards of Excellence GSE Implementation in Sixth Grade

Physical Oceanography

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

The History of the Earth

Figure 65: Reservoir in a steady state condition where the input flux is equal to the output flux and the reservoir size remains constant.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Core Idea ESS2 Vocab. Earth s Systems. How and why is Earth constantly changing?

TAKE HOME EXAM 8R - Geology

Introduction to Earth Science

The Nature of Science

Terrestrial Planets: The Earth as a Planet

The Official CA State Science Education Standards for Earth Science K 8

Systems? Climate Systems. Earth Systems. Earth Interior Systems. Atmospheric/Biospheric Systems: Human Impact Hydrologic Cycle.

Chapter 11 Review Clickers. The Cosmic Perspective Seventh Edition. Jovian Planet Systems Pearson Education, Inc.

The Atmosphere Made up of mainly two gases: Nitrogen 78% Oxygen 21% Trace Gases 1%

Grades 9-12: Earth Sciences

Geosphere Classwork. 5 th Grade PSI. 1. Define geosphere. 2. Where is the oldest part of the Earth located?

Titan. PTYS 206 (from original presentation by Catherine Neish) April 1, 2014

SCIENCE SAMPLER ~ Geology ~ Unit 4 of 5

Science Practice Astronomy (AstronomyJSuber)

General Astronomy (29:61) Fall 2012 Lecture 28 Notes, November 7, 2012

GEOLOGY FOR MINING ENGINEERS. Prof.Dr.Kadir DİRİK Lecture Notes 2015

Chapter 11. The Archean Era of Precambrian Time

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

ASTR-101 Section 004 Lecture 9 Rare Earth? John T. McGraw, Professor

EOC Study Guide Honors

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

The Proterozoic Part 1

Evolution of the Atmosphere

4) Outline the major developments that allowed life to exist on Earth.

Name Class Date. Write the letter that best answers the question or completes the statement on the line provided.

Shape and Size of the Earth

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

S6E1. Obtain, evaluate, and communicate information about current scientific views of the universe and how those views evolved. a.

Online Quiz Chapter 16 Due Wednesday at 11:59PM. Online Quiz Chapter 7 Due Wednesday at 11:59PM. Online Quiz Chapter 8 Due Wednesday at 11:59PM

Transcription:

GY 112 Lecture Notes D. Haywick (2006) 1 GY 112 Lecture Notes Evolution of the Earth's Atmosphere and Hydrosphere Lecture Goals: A) The Early Atmosphere B) The Oceans and Hydrosphere C) The Change Textbook reference: Levin 7 th edition (2003), Chapter 6; Levin 8 th edition (2006), Chapter 8 A) The Early Atmosphere We have spent considerable time mentioning that the early Earth was very different from today. The same can be said about the early atmosphere. Today, our atmosphere contains only a few major gases: O 2 : 21%; N 2 ; 78%; Ar: 1%; CO 2 ; 0.03% (but rising!) When the Earth was first forming (refer to an earlier lecture) it is likely that there was a primordial atmosphere of some sort. During the Early Hadean Eon, the atmosphere might have consisted of water vapor, nitrogen, argon, carbon dioxide etc. There might also have been some hydrogen and helium (left over from the initial formation of the solar system), but most of these gases would have been blown away when the sun ignited and the solar wind began. In addition, gases like hydrogen and helium can largely escape the Earth's gravity well anyway, so they would not have hung around for any great length of time. Well all this begs the question, "Where did our "modern" atmosphere come from? The most likely source is volcanoes. During the Hadean, volcanic activity would have been extreme. Volcanoes were literally everywhere and volcanic eruptions must have been occurring non-stop. Volcanic eruptions produce a lot more than lava and ask. They produce tremendous amount of gas and it is quite likely that the early Earth's atmosphere was primarily derived from these volcanic eruptions. Today volcanic eruptions produce H 2 O, CO 2, H 2 S, SO 2, NO 2, N 2 O (generally written as N x O y ), HCl and several other gases (most of which smell bad). To the best of my knowledge, volcanic eruptions generally do not produce much CH 4 or N 2, but we suspect that these gases were also in the Earth's early atmosphere. Perhaps they managed to hang around from the primordial solar nebula or they leaked into the atmosphere from the interior of the Earth through other mechanisms. One thing is clear however, the water vapor that was produced from the volcanic eruptions eventually condensed in the atmosphere to form water droplets (clouds) and rainfall. The oceans almost certainly formed from this rainfall. Incidentally, rain for the first several million years would have been extremely acidic. Water combines with CO 2, SO 2, HCl and N x O y to form many strong acids:

GY 112 Lecture Notes D. Haywick (2006) 2 H 2 O + CO 2 = H 2 CO 3 (carbonic acid; weak) H 2 O + SO 2 = H 2 SO 3 (sulfurous acid; weak) H 2 O + SO 3 = H 2 SO 4 (sulfuric acid; strong) H 2 O + NO x = HNO 3 (nitric acid; strong) H 2 O + HCl = HCl (hydrochloric acid; strong) Given the acidity of the rain that fell on the early Earth, it is reasonable to assume that chemical weathering of the rocks was widespread. Many minerals would have dissolved, and the dissolved ions would have then been carried away by streams into the oceans. The ionic soup that we today call seawater may have been produced gradually by acid rain reacting with rocks. The one ingredient missing from both the oceans and the atmosphere at this time was oxygen. The entire Earth hydrosphere (the total volume of water on the planet; atmosphere, oceans, lakes, rivers, ice) was anaerobic. We have already discussed the origin of life on this planet, but a refresher is probably called for here. The first prokaryotic life forms were probably anaerobic meaning that they preferred environments free of oxygen. But they also had one other hurtle to overcome; ultraviolet radiation. UV radiation is constantly emitted from stars and it is exceptionally hazardous to all life forms (aerobic and anaerobic alike). The only reason that we can survive on the Earth today is that we have a shield of ozone (O 3 ) in the upper atmosphere that prevents UV radiation from making it to the surface of the Earth where we live. The early atmosphere did not have any free oxygen and it is likely that it did not have much ozone either. The first life forms probably lived in deep parts of the oceans (the deep water protected them). They could not live in shallower water just yet. Ozone had to build up first. Ozone is produced in the upper atmosphere through photochemical reactions involving UV radiation and water: 2H 2 O + uv radiation = 2H 2 + O 2 and 2O 2 + uv radiation = O 3 + O and O + O 2 = O 3 Nitrogen oxides (the main constituents of smog) are formed through the same process. When water is first dissociated, it forms hydrogen gas and some oxygen. The hydrogen escapes into space while the oxygen forms ozone. You might think that the oxygen that we find in today's

GY 112 Lecture Notes D. Haywick (2006) 3 atmosphere came from UV photochemical dissociation of water, but experimentation suggests that this was not the case. We owe our present atmospheric constituents to microscopic beasties. B) The Oceans and the Hydrosphere Before we discuss the change that occurred in the atmosphere, it is sensible to first discuss how water on the Earth evolved. As we discussed earlier, the oceans probably formed through condensation of volcanic gases erupted from volcanoes. I read recently of a new possible source of oceanic waters that I'd like to pass on to you. I believe that I read it in New Scientist, an excellent British weekly science news review magazine. A scientist had observed dull flashes of light in the upper atmosphere which gave off the spectrum of water. He interpreted these flashes as records of "snowball" impacts on the upper atmosphere. He hypothesized that space is full of small, loosely packed snowball comets and that they regularly impact the upper atmosphere of the Earth. They lack any real substance and consequently, could never make it through the atmosphere. But he feels that they might have contributed a lot of water to the Earth over geological time. Who knows, maybe they did. Regardless of how the water got on the Earth (volcanoes or snowballs or both), it is clear that we have been recycling the water for a longtime. The Earth's hydrosphere is largely a closed system. This means that you neither lose nor gain water. This isn't exactly true. You lose and gain some water through the Earth's interaction with space, but not too much, that is, if you don't accept the snowball hypothesis). There are 5 major reservoirs that comprise the Earth's hydrosphere. They are 1) the oceans, 2) the polar ice caps, 3) groundwater, 4) rivers and lakes and 5) the atmosphere. The water is circulated between reservoirs through the hydrological cycle. This involves the processes of evaporation, condensation, precipitation, infiltration, evapotranspiration and runoff. The following cartoon is the best way to illustrate the cycle.

GY 112 Lecture Notes D. Haywick (2006) 4 The water that we today see erupting from volcanoes is not "new" water. It is recycled along with the lithosphere that is subducted at convergent plate boundaries. It has been calculated that the entire volume of ocean water can be recycled through this process every 200 million years. I find this fascinating. Given the recycling that goes on in the hydrosphere (including along convergent plate boundaries), it is likely that the bottled water you just drank has been through a number of different reservoirs. It could have been ocean water, a cloud, a glacier, a geyser and/or the bodily fluids of a dinosaur. So much for "mountain pure". I can think of one or two good Budweiser commercials based on this premise (and yes they both involve frogs and lizards and their kidneys). By the way, there is "new" water available to the Earth's hydrosphere, it's just not all that accessible. The Earth's mantle is apparently full of water (albeit incorporated into minerals), but it is trapped below the lithosphere. Right now it is destined to stay there. C) The Change Alright, when last we visited the atmosphere (and the oceans) they were anaerobic. Prokaryotic life was in the deeper portions of the ocean and all was peaceful. As the ozone layer built up, the micro-beasties (including photosynthetic cyanobacteria) spread into shallower water (remember, they could not live here until they had protection from the UV radiation). Eventually they must have dominated the world's oceans. Since they were photosynthetic, they took in CO 2 and produce O 2 as a waste product. Overtime, they "polluted" their environment with oxygen. As they lived in a marine environment, the pollution was initially confined to the oceans. The first evidence of increasing oxygen in seawater is found in marine sedimentary rocks called banded iron formations or BIF's (see image to right from http://www.uni-tuebingen.de/uni/qvo/pm/pm2005/gifs/pm-05-100-01gr.jpg). These are curious rocks that are prized by rock collectors for their intricate banding. They consist of

GY 112 Lecture Notes D. Haywick (2006) 5 finely laminated bands of red, green and/or silver-colored minerals each about 1 to 2 mm thick. The red and silver bands are chert containing hematite (earthy - red; specular - silver). The chemical formula of hematite is Fe 2 O 3 which indicates that the iron has a +3 charge. Fe 3+ is ferric iron and only forms in oxidizing environments. The green bands are also iron-rich chert, but they are ferrous in nature (i.e., Fe 2+ ) suggesting that they formed in anaerobic or reducing environments. The green-red alterations suggest fluctuations between oxidizing and reducing conditions. Alterations between earthy and specular hematite probably occurred entirely during oxidizing conditions, but we are not certain about this. There are even iron formations that are unbanded. They are mostly composed of earthy hematite (Red Mountain in Birmingham is an example of an unbanded iron formation, but it is much younger than the Archean examples that we have been discussing - Red Mountain formed through groundwater alteration which is a form of diagenesis in the Paleozoic. Archean banded iron formations are reasonably common around the world and comprise the majority of many country s iron ore supply (e.g., USA, Canada and Australia; see map below from http://www.ldeo.columbia.edu/edu/dees/) The origin of the iron in these BIFs is kind of still debated. Iron isn't all that soluble in seawater under normal conditions, so the fact that it formed extensive BIF's at all is intriguing. Some believe that intensive underwater volcanic activity was responsible for the increased iron deposits. It is also possible that high acidity and/or UV radiation made the iron

GY 112 Lecture Notes D. Haywick (2006) 6 more soluble in the past. We will probably never know for certain. We can however, date when the transition from anaerobic to aerobic oceanic conditions occurred. Green-red BIFs date back to about 3.1 GA suggesting that the Earth's oceans were starting to go aerobic well back in the Archean. Unbanded iron formations are mostly younger that 2.0 GA which suggests fully aerobic marine conditions during the Paleoproterozoic. But what of the atmosphere? We find a similar transition from green to red (this time in terrestrial shales), that dates back to about 1.8 GA. Many geologists believe that this was the start of an oxidizing atmosphere and that O 2 has been gradually added ever since. It is important that you realize that without oxygen in the oceans and in the atmosphere, higher forms of life could not have evolved on this planet. Where it not for prokaryotic bacteria, you would not exist. Important terms/concepts from today s lecture (Google any terms that you are not familiar with) Carbonic acid Sulfuric acid Nitric acid Hydrochloric acid Hydrosphere Photochemical dissociation Ultraviolet radiation (UV) Closed system Ozone, O 3 Reservoir Hydrological cycle Evaporation Condensation Precipitation Runoff Infiltration Banded iron formations (BIFs) Iron Formations Ferric Ferrous Reducing Oxidizing diagenesis