PHY131H1F - Class 18. Torque of a quick push

Similar documents
PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

5/6/2018. Rolling Without Slipping. Rolling Without Slipping. QuickCheck 12.10

PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

Kinetic Energy of Rolling

Rotational Dynamics. A wrench floats weightlessly in space. It is subjected to two forces of equal and opposite magnitude: Will the wrench accelerate?

Angular Momentum Conservation of Angular Momentum

PHY131H1F - Class 9. Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag

Physics 8 Friday, November 4, 2011

Stability of rotating objects

PHY131H1F - Class 11. Today, finishing Chapter 6: Friction, Drag Rolling without slipping Examples of Newton s Second Law.

Midterm 3 Thursday April 13th

Name: Date: Period: AP Physics C Rotational Motion HO19

Lecture 20 Chapter 12 Angular Momentum Course website:

We define angular displacement, θ, and angular velocity, ω. What's a radian?

4) Vector = and vector = What is vector = +? A) B) C) D) E)

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

Physics 131: Lecture 22. Today s Agenda

Review for 3 rd Midterm

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013

Physics 131: Lecture 22. Today s Agenda

Physics 106 Common Exam 2: March 5, 2004

PHYSICS 149: Lecture 21

Webreview Torque and Rotation Practice Test

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

8.012 Physics I: Classical Mechanics Fall 2008

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω

= o + t = ot + ½ t 2 = o + 2

Chapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Static Equilibirum CHECK YOUR NEIGHBOR

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Name Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?

Chapter 8 Lecture Notes

AP practice ch 7-8 Multiple Choice

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Chapter 10: Dynamics of Rotational Motion

Chapter 4 Force and Motion

Cutnell/Johnson Physics

Concept Question: Normal Force

Physics 106 Sample Common Exam 2, number 2 (Answers on page 6)

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

A. Incorrect! It looks like you forgot to include π in your calculation of angular velocity.

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

Physics 121, March 27, Angular Momentum, Torque, and Precession. Department of Physics and Astronomy, University of Rochester

Angular Momentum L = I ω

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Recap: Solid Rotational Motion (Chapter 8) displacement velocity acceleration Newton s 2nd law τ = I.α N.s τ = F. l moment of inertia mass size

PSI AP Physics I Rotational Motion

Chapter 12. Rotation of a Rigid Body

PHY131H1F Class 5. Clicker Question

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Chapter 9. Rotational Dynamics

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Rotation Quiz II, review part A

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

Quiz Number 4 PHYSICS April 17, 2009

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

A solid disk and a ring roll down an incline. The ring is slower than the disk if

Angular Momentum L = I ω

Physics 11 Fall 2012 Practice Problems 6

AP Physics 1 Rotational Motion Practice Test

PSI AP Physics I Rotational Motion

= 2 5 MR2. I sphere = MR 2. I hoop = 1 2 MR2. I disk

Chapter 9-10 Test Review

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

Gyroscopes and statics

Physics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here.

Chapter 8: Rotational Motion

Torque and Rotation Lecture 7

End-of-Chapter Exercises

Chapter 9. Rotational Dynamics

Torque. Introduction. Torque. PHY torque - J. Hedberg

Test 7 wersja angielska

Rolling, Torque, Angular Momentum

Unit 8 Notetaking Guide Torque and Rotational Motion

Momentum. The way to catch a knuckleball is to wait until it stops rolling and then pick it up. -Bob Uecker

Physics 141. Lecture 18. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 18, Page 1

Chapter 9- Static Equilibrium

1 MR SAMPLE EXAM 3 FALL 2013

Description: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 11 Angular Momentum; General Rotation. Copyright 2009 Pearson Education, Inc.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

31 ROTATIONAL KINEMATICS

Announcements Oct 27, 2009

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

r CM = ir im i i m i m i v i (2) P = i

Prof. Rupak Mahapatra. Dynamics of Rotational Motion

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Physics 53 Exam 3 November 3, 2010 Dr. Alward

Rolling, Torque & Angular Momentum

Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Rotation review packet. Name:

In the absence of an external force, the momentum of an object remains unchanged conservation of momentum. In this. rotating objects tend to

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1

Finishing Chapter 26 on dipoles.. Electric Potential Energy of: Point Charges Dipoles Electric Potential: V Voltage: ΔV

Transcription:

Today: Today, Chapter 11: PHY131H1F - Class 18 Angular velocity and Angular acceleration vectors Torque and the Vector Cross Product Angular Momentum Conservation of Angular Momentum Gyroscopes and Precession Funny animation of skater from http://i.imgur.com/vgbokoc.gif Torque of a quick push A student gives a quick push to a puck that can rotate in a horizontal circle on a frictionless table. After the push has ended, the puck s angular speed A. Steadily increases. B. Increases for awhile, then holds steady. C. Holds steady. D. Decreases for awhile, then holds steady. E. Steadily decreases. 1

Class 18 Optional Preclass Quiz on MasteringPhysics This was due this morning at 10:00am 94% of students got: A uniform disk, a uniform hoop, and a uniform solid sphere are released at the same time at the top of an inclined ramp. They all roll without slipping. They reach the bottom of the ramp in the order: sphere (2/5 MR 2 ), disk (1/2 MR 2 ), hoop (MR 2 ). Basically the larger the rotational inertia, the slower the object rolls down the hill (because it requires more static friction to get it rolling). Class 18 Optional Preclass Quiz Student Comments Would you rather be rick rolled everyday for the rest of your life or curve up our midterm marks? Choose only one. Harlow answer: I choose the curve for sure. My grades are telling me to be a trophy husband, but my looks are telling me to study harder. I found the right hand rule confusing and would like that to be explained. The section about gyroscopes was interesting. If two people are rotating but in opposite directions, is one of their angular momentum the negative of the other? Harlow answer: Correct. 2

Class 18 Optional Preclass Quiz Student Comments [part 1:] Since static friction is always associated with not moving is it impossible for static friction to do work? Harlow answer: Correct. Static friction from a non-moving surface cannot do work. [part 2:] If the net force causing a car to move forwards is static friction what force is doing the work on the car? Harlow answer: The car is doing work on itself! Chemical energy is being converted to mechanical energy internally. The static friction is important only to provide a rolling without slipping constraint. Another way to look at this is that energy is not being transferred from the road to the car. The Vector Description of Rotational Motion One-dimensional motion uses a scalar velocity v and force F. A more general understanding of motion requires vectors and. Similarly, a more general description of rotational motion requires us to replace the scalars and with the vector quantities and. Doing so will lead us to the concept of angular momentum. 3

The Angular Velocity Vector The magnitude of the angular velocity vector is. The angular velocity vector points along the axis of rotation in the direction given by the right-hand rule as illustrated. The Cross Product of Two Vectors The scalar product (dot) is one way to multiply two vectors, giving a scalar. A different way to multiple two vectors, giving a vector, is called the cross product. If vectors and have angle between them, their cross product is the vector: 4

The Right-Hand Rule The cross product is perpendicular to the plane of and. The right-hand rule for the direction comes in several forms. Try them all to see which works best for you. Note that. Instead,. The Torque Vector We earlier defined torque τ = rfsinϕ. r and F are the magnitudes of vectors, so this is a really a cross product: A tire wrench exerts a torque on the lug nuts. 5

Angular Momentum of a Particle A particle of mass m is moving. The particle s momentum vector makes an angle with the position vector. Angular Momentum of a Particle Why this definition? If you take the time derivative of and use the definition of the torque vector, you find: Torque causes a particle s angular momentum to change. This is the rotational equivalent of and is a general statement of Newton s second law for rotation. 6

Angular Momentum of a Rigid Body For a rigid body, we can add the angular momenta of all the particles forming the object. If the object rotates on a fixed axle, or about an axis of symmetry then it can be shown that And it s still the case that. Angular Momentum Angular momentum rotational inertia rotational velocity L = Iω This is analogous to Linear momentum mass velocity p = m v 7

A bicycle is traveling toward the right. What is the direction of the angular momentum of the wheels? A. left B. right C. into page D. out of page E. up Conservation of Angular Momentum An isolated system that experiences no net torque has and thus the angular momentum vector constant. is a 8

The Law of Conservation of Momentum If there is no net external force on a system, then its momentum is a constant. The Law of Conservation of Energy If there is no work or heat being exchanged with a system and its surroundings, then its energy is constant. The Law of Conservation of Angular Momentum If there is no net external torque on a system, then its angular momentum is a constant. Suppose you are swirling a can around and suddenly decide to pull the rope in halfway; by what factor would the speed of the can change? A. Double B. Four times C. Half D. One-quarter Angular Momentum CHECK YOUR NEIGHBOR 9

Suppose you are swirling a can around and suddenly decide to pull the rope in halfway; by what factor would the speed of the can change? A. Double B. Four times C. Half D. One-quarter Angular Momentum CHECK YOUR NEIGHBOR Conservation of Angular Momentum Example: When the professor pulls the weights inward, his rotational speed increases! 10

Newton s 2 nd law: Kinetic energy: Linear / Rotational Analogy Linear s, v, a Force: F Mass: m a F m net K cm 1 2 mv 2 Rotational Analogy θ, ω, α Torque: τ Rotational Inertia: I net I K rot 1 2 I 2 Momentum: p mv L I Two buckets spin around in a horizontal circle on frictionless bearings. Suddenly, it starts to rain. As a result, A.The buckets speed up because the potential energy of the rain is transformed into kinetic energy. B.The buckets continue to rotate at constant angular velocity because the rain is falling vertically while the buckets move in a horizontal plane. C.The buckets slow down because the angular momentum of the bucket + rain system is conserved. D.The buckets continue to rotate at constant angular velocity because the total mechanical energy of the bucket + rain system is conserved. E.None of the above. 11

EXAMPLE 12.19 Two Interacting Disks Precession of a Gyroscope Consider a horizontal gyroscope, with the disk spinning in a vertical plane, that is supported at only one end of its axle, as shown. You would expect it to simply fall over but it doesn t. Instead, the axle remains horizontal, parallel to the ground, while the entire gyroscope slowly rotates in a horizontal plane. This steady change in the orientation of the rotation axis is called precession, and we say that the gyroscope precesses about its point of support. The precession frequency Ω is much less that the disk s rotation frequency ω. 12

Gravity on a Nonspinning Gyroscope Shown is a nonspinning gyroscope. When it is released, the net torque is entirely gravitational torque. Initially, the angular momentum is zero. Gravity acts to increase the angular momentum gradually in the direction of the torque, which is the -direction. This causes the gyroscope to rotate around x and fall. Gravity on a Spinning Gyroscope Shown is a gyroscope initially spinning around the z-axis. Initially, gravity acts to increase the angular momentum slightly in the direction of the torque, which is the -direction. This causes the gyroscopes angular momentum to shift slightly in the horizontal plane. The gravitational torque vector is always perpendicular to the axle, so dl is always perpendicular to L. 13

Precession of a Gyroscope The precession frequency of a gyroscope, in rad/s, is Ω = Mgd Iω Here M is the mass of the gyroscope, I is its rotational inertia, and d is the horizontal distance of the center of mass from the support point. The angular velocity of the spinning gyroscope is assumed to be much larger than the precession frequency; ω >> Ω. Nuclear Magnetic Resonance A proton in the nucleus of an atom is like a little spinning top. When placed in a strong static magnetic field, the magnetic force produces a torque on the proton, which causes it to precess. The precession frequency is in the radio-frequency range, which allows the proton to absorb and re-emit radio-waves. This allows doctors to image inside the human body using completely harmless radio waves. 14

Before Class 19 on Monday Please read chapter 12 on Static Equilibrium. The preclass quiz is due Monday morning. Problem Set 8 on Chapters 10 and 11 is due Tuesday Nov. 24 at 11:59pm. Problem sets have Tuesday deadlines now! Something to think about over the weekend: The supports to the diving board provide a vertical force on the board so the girl will not fall. What are the directions of the force on the board at point 1 and point 2: up or down? Why? 1 2 15