Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems

Similar documents
Problem Solving 1: Line Integrals and Surface Integrals

Module 02: Math Review

MATHS 267 Answers to Stokes Practice Dr. Jones

Calculus Workshop. Calculus Workshop 1

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

MATH 280 Multivariate Calculus Fall Integration over a surface. da. A =

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Major Ideas in Calc 3 / Exam Review Topics

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES

One side of each sheet is blank and may be used as scratch paper.

Lecture 10 - Moment of Inertia

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line

ENGI Gradient, Divergence, Curl Page 5.01

18.02 Multivariable Calculus Fall 2007

3: Gauss s Law July 7, 2008

Physics 225 Relativity and Math Applications. Fall Unit 11 Multidimensional Integration I

Welcome. to Electrostatics

Volume: The Disk Method. Using the integral to find volume.

THE IMPORTANCE OF GEOMETRIC REASONING

18.02 Multivariable Calculus Fall 2007

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

G A P between Mathematics and the Physical Sciences

Stokes s Theorem 17.2

Review Sheet for the Final

MATH 280 Multivariate Calculus Fall Integration over a curve

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text.

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Math 20C Homework 2 Partial Solutions

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions.

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

MULTIVARIABLE INTEGRATION

Summary of various integrals

Math 11 Fall 2016 Final Practice Problem Solutions

Math 221 Examination 2 Several Variable Calculus

Student name: Student ID: Math 265 (Butler) Midterm III, 10 November 2011

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Name Date Partners. Lab 2 GAUSS LAW

7 Curvilinear coordinates

Course Notes Math 275 Boise State University. Shari Ultman

G A P between Mathematics and the Physical Sciences

LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

Solutions for the Practice Final - Math 23B, 2016

Exercises for Multivariable Differential Calculus XM521

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

Chapter 1. Vector Analysis

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group.

Problem Solving 3: Calculating the Electric Field of Highly Symmetric Distributions of Charge Using Gauss s Law

Orthogonal Curvilinear Coordinates

r 4 r 2 q 2 r 3 V () r En dln (r) 1 q 1 Negative sign from integration of E field cancels the negative sign from the original equation.

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

Bridging the Gap between Mathematics and the Physical Sciences

APPLICATIONS OF GAUSS S LAW

Figure 21:The polar and Cartesian coordinate systems.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x

3 Chapter. Gauss s Law

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

MATH H53 : Final exam

G A P between Mathematics and the Physical Sciences

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

Week 7: Integration: Special Coordinates

Notes 19 Gradient and Laplacian

APPENDIX 2.1 LINE AND SURFACE INTEGRALS

Math 31CH - Spring Final Exam

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr.

MATH 52 FINAL EXAM SOLUTIONS

CURRENT MATERIAL: Vector Calculus.

PHYS 281: Midterm Exam

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

Solution. This is a routine application of the chain rule.

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

Math 23b Practice Final Summer 2011

Review of Engineering Dynamics

ENGI Gradient, Divergence, Curl Page 5.01

ENGI Multiple Integration Page 8-01

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and

CALCULUS III THE CHAIN RULE, DIRECTIONAL DERIVATIVES, AND GRADIENT

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

Charge and current elements

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018

Math 234 Exam 3 Review Sheet

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Calculus with Analytic Geometry 3 Fall 2018

2.20 Fall 2018 Math Review

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

Gauss s Law & Potential

Practice Final Solutions

e x3 dx dy. 0 y x 2, 0 x 1.

Transcription:

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems In 8.02 we regularly use three different coordinate systems: rectangular (Cartesian), cylindrical and spherical. In order to become familiar with the unit vectors for each of those systems, take a minute to explore the online visualizations. Go to the Vector Fields page and select the Coordinate Systems Shockwave (next to bottom column). Once it loads you will see the following page:

Part II. Differentiation & The Gradient df For one dimensional functions of a single variable, e.g. f ( x ), the derivative, or f '( x), tells dx you how the function changes for small changes in the independent variable (x). The picture of this as the slope of the function is helpful. When a function depends on several variables, e.g. f f f f ( xyz,,, ) there are several different derivatives, called partial derivates,, &. Both in x y z concept and in practice the partial derivative is the same as the one dimensional derivative, asking how the function changes as you change one of its independent variables (while holding the others fixed treat them as constants when you take the derivative). PROBLEM 2: (answer on the tear-sheet at the end): kq kq Consider the function V( x, y, z) = = r x + y + z 2 2 2 V V V. Calculate, & x y z. It is also convenient to define the gradient of a multidimensional scalar function. The gradient is a vector that everywhere points in the direction of steepest ascent (uphill) of the function. It is f calculated as follows: gradient ( ) ˆ f ˆ f f = f = i + j+ kˆ. x y z PROBLEM 3: (answer on the tear-sheet at the end): kq Again consider V( x, y, z) = = kq r 2 2 2 x + y + z. Calculate its gradient V. Friday 02/10/2006 Solving 1-2

PROBLEM 3: continued (answer on the tear-sheet at the end): Rewrite the gradient as a function of 2 2 r = x + y + z 2 and r xˆi+ yˆj+ zkˆ rˆ = = r r Does V always point uphill for the function V? Explain. Part III. Multivariable Integration Although we frequently use integration in 8.02, the integrals we do tend to be VERY easy (most things are constant and pull straight out of the integral). Where students typically have problems is in not understanding the concept of integration and how to set up the integral. Below we focus on the types of integrals used in this class. If you find yourself doing a lot of math then you probably aren t doing it right. We leave the math intensive problems to 18.02. A. Concept: Integration as Summing the Pieces b In single variable calculus the definite integral of a function is often written: f ( xdx ). The dx is a differential a small length of the x axis and to many seems to be merely a notational requirement, like an appendage of the integral. I encourage you to think of the differential as the most important part of the integral, and to start every integral with ONLY a differential. For example, if you want to know the total charge Q on some strangely shaped object with a given charge density, you would want to write: Q = dq. If you want to know the area of some surface you would start A = da. What have we achieved by doing this, you might ask? We have decided that in order to find out the total value of something (the charge or the area in the two examples above) we need to break it up into parts and add up the contributions from each of those parts. The differential (e.g. dq or da) is some very small piece of the whole that (1) we can easily write down and (2) provides us some way to move through all the pieces of that whole. a Friday 02/10/2006 Solving 1-3

Example 1 Suppose we want to find the area under a function f(x) between x = a and x = b. To do this we break the total area A into a number of small rectangles of width dx and height f(x). The area of each of these little rectangles da is easily written (its just the area of a rectangle): da = f(x) dx. To calculate the area we write: A = da = f ( x) dx b a Our choice of da obeyed our two rules: it was easy to write down (we know the area of rectangles) and by adding up the area of such rectangles as we walk x from a to b we will get the value of the whole area. B. Notation: Multivariable Integration When we move to integrals of multivariable functions we need some new notation. Instead of only having one straight axis we can walk along (i.e. the x axis in the above example), in three dimensions we can walk along curves (one dimensional objects), surfaces (2D) or volumes (3D). For each new dimension we need a new variable to tell us where we are on the object a single variable, distance from the end, tells you where you are on a curve, but two variables are needed to tell you where you are on a surface and hence an extra integral sign. So we have: Line (Path) Integrals: s = ds Surface Integrals: A da = = Volume Integrals: V dv For line and surface integrals we have one more notational convention. We distinguish between open and closed curves and surfaces. Closed curves are those where the beginning and end points are the same (the perimeter of a circle is closed, a line isn t). Closed surfaces are those that completely contain volume (a spherical shell is closed, a plane isn t). We indicate that we are integrating over a closed curve or surface by putting a circle over the integral sign: Closed Line Integral: s = d s Closed Surface Integral: A da This distinction is irrelevant for doing the integral, but helps in remembering the shape over which you are integrating. C. Differentials in different coordinate systems A final piece of useful information is how to break an object up into small pieces in different coordinate systems. In rectangular (Cartesian) coordinates, the geometry is very straightforward. Distances (for line integrals) tend to have ds = dx (or dy or dz). Areas are just squares (da = dx dy or dx dz ). Volumes are just cubes (dv = dx dy dz). = Pictures are helpful for finding similar quantities in cylindrical and spherical coordinates: Friday 02/10/2006 Solving 1-4

Figure 2: Differential dimensions in rectangular, cylindrical & spherical coordinate systems. Cylindrical coordinates (ρ, φ, z) has differential cube of sides dρ, ρdφ and dz Spherical coordinates (r, θ, φ) has differential cube of sides dr, rdθ and rsinθ dφ In addition to integrating over these small differential cubes, it is often convenient to integrate over larger differential objects. For example, in example 1 we wrote da = f(x) dx and integrated only in x, rather than writing da = dx dy and integrating from y = 0 to f(x) and then over x. We essentially did the dy integral in our head, because it was straightforward. Example 2 Write integral expressions for the area of a circle of radius R in two different ways (a) A = Circle R 2π da = θ r =0 =0 Friday 02/10/2006 ( rdθ ) dr (b) A = Circle R da = 2π rdr r =0 Solving 1-5

PROBLEM 4: (answer on the tear-sheet at the end): Try this yourself in cylindrical coordinates. Write down integral expressions for the volume of a cylinder of radius R and height H as (a) A 3D integral, integrating over the small differential cubes shown in figure 2 (b) A 2D integral, integrating over circles of radius r, thickness dr and height dz (c) A 1D integral, integrating over cylindrical shells of radius r, thickness dr and height H (d) A 1D integral, integrating over disks of radius R, thickness dz D. Charge Density: An Example of Integrating Scalar Functions Instead of being confined to a point, charge is often distributed over objects, either uniformly (with constant charge density) or with some position dependent charge density. For 1-2- and 3- dimensional objects we us different symbols for charge density: 2 3 1D: dq = λ ds ( λ in [C/m]) 2D: dq = σ da ( σ in [C/m ]) 3D: dq = ρdv ( ρ in [C/m ]) PROBLEM 5: (answer on the tear-sheet at the end): Calculate the total charge on each of the following objects, given their charge density (a) A ring, radius R, with constant linear charge density λ Friday 02/10/2006 Solving 1-6

PROBLEM 5 continued: (answer on the tear-sheet at the end): ρ r = ρ R r (b) A solid sphere, radius R, with volume charge density ( ) R E. Line Integrals of Vector Functions dotted into Displacement In addition to integrating scalar functions, we often integrate vector functions which are dotted into some distance. This dot product is then a scalar function, and we integrate just as above. For example, if an object moves a distance ds while a force F acts on it, we say that the force does work dw = F ds. If the object then moves along a path, we can calculate the total work done by the force while the object was moving as: W = dw = d F s The dot product indicates that only the part of the force pushing along the displacement contributes to the total work done. PROBLEM 6: (answer on the tear-sheet at the end): A charge q in a uniform electric field E= E0ˆ j feels a force F= qe. How much work is done by the field on the particle if it moves along a semi-circle of radius R centered at the origin in the xy plane from (x, y) = (0, R) to (0, -R)? Friday 02/10/2006 Solving 1-7

D. Surface Integrals of Vector Functions dotted into Normals: Flux In two dimensions, the equivalent of the question we just asked in 1D how much does this vector field point along the path we are integrating along? is how much does this vector field push through the surface we are integrating over? This quantity is called the flux, and for a vector function F, the flux through a surface S is given by F da= F nˆ da= Fn da S S S where da = daˆ n and ˆn is a unit vector pointing normal (perpendicular) to the surface. The dot product F ˆ n = Fn is the component of F parallel to ˆn. As an example, suppose the function F describes the rate at which water flows through a cylindrical pipe per cross sectional area per unit time (i.e. has units liter/m 2 s). The flux of that function through some area A is the rate at which water hits that area. Intuitively, that rate should be independent of the specific area, as long as it completely covers the pipe. Example 3 Show that the flux of a uniform flow F= f ˆ 0 k through a pipe of radius R is the same through a flat disk and through a hemisphere (both of which completely fill the cross-section of the pipe). From the definition of the flow, we can see that the pipe runs along the z-axis. A flat disk will have a normal parallel to the flow ( nˆ = k) ˆ and the integral is straight forward: Flux= F da = f S S 0dA= f0π R 2 The hemisphere is a little trickier because its normal vector is in the ˆr direction, so π /2 2π Flux = F da = f kˆ rˆ da= f cos da= f cos Rsin d Rd S S 0 S 0 0 θ= 0ϕ= 0 π /2 2 2 2 π /2 2 0π 2sin ( θ) cos( θ) θ 0π sin ( θ) θ 0 0π = θ = 0 = f R d = f R = f R ( θ ) ( θ) { ( θ) ϕ}{ θ} It s the same for the disk and the hemisphere, just as it should be the same amount of water must pass through both of them because they both completely cover the cross-section of the pipe, so all water that flows through one must flow through the other. Friday 02/10/2006 Solving 1-8

PROBLEM 7: (Answer on the tear-sheet at the end!) (a) Consider a uniform electric field E= aˆi+ bˆjwhich intersects a surface of area A. What is the electric flux through this area if the surface lies (i) in the xz plane with normal in the positive y direction? (ii) in the xy plane with the normal in the positive z direction? (b) A cylinder has radius R and height h, oriented along the z-axis. A uniform field E = E ˆ o j penetrates the cylinder. Determine the flux En ˆ da for the side of the cylinder with y > 0, where the S area normal points away from the interior of the cylinder. Hints: If φ is the angle in the xy plane measured from the x-axis toward the positive y-axis, what is the vector formula for the normal ˆn to the side of the cylinder with y > 0, in terms of φ, î and ĵ? What is E nˆ? What is the differential area of the side of the cylinder in term of R, dz, and dφ? Friday 02/10/2006 Solving 1-9

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Tear off this page and turn it in at the end of class!!!! Note: Writing in the name of a student who is not present is a Committee on Discipline offense. Names PROBLEM 1: What is it about the coordinate axes in cylindrical and spherical coordinates that makes those axes very different from the axes in a Cartesian coordinate system? PROBLEM 2: V (a) x V (b) y V (c) z = = = PROBLEM 3: (a) V = (b) Rewritten in terms of and ˆ, r r V( r) = (c) Does V always point uphill for the function V? Explain. Friday 02/10/2006 Solving 1-11

PROBLEM 4: Write down expressions for the volume of a cylinder of radius R and height H as (a) A 3D integral, integrating over the small differential cubes shown in figure 2 (b) A 2D integral, integrating over circles of radius r, thickness dr and height dz (c) A 1D integral, integrating over cylindrical shells of radius r, thickness dr and height H (d) A 1D integral, integrating over disks of radius R, thickness dz PROBLEM 5: Calculate the total charge on each of the following objects, given their charge density (a) A ring, radius R, with constant charge density λ Q = ρ r = ρ R r (b) A solid sphere, radius R, with charge density ( ) R Q = PROBLEM 6: How much work is done by a uniform electric field E = E0ˆ j of a charged particle q that moves along a semi-circle of radius R centered at the origin in the xy plane from (x, y) = (0, R) to (0, -R)? W = PROBLEM 7: (a) Consider a uniform field E= aˆi+ bĵwhich intersects a surface of area A. What is the flux through this area if the surface lies (i) in the xz plane? (ii) in the xy plane? (b) Determine the flux En ˆ da for the side of the cylinder with y > 0. S Friday 02/10/2006 Solving 1-12