MERGERS OF GLOBULAR CLUSTERS

Similar documents
arxiv:astro-ph/ v1 17 Aug 2001

The Milky Way Formation Timescale

L37 1. INTRODUCTION 2. SAMPLE SELECTION, OBSERVATIONS, AND REDUCTION. The Astrophysical Journal, 508:L37 L41, 1998 November 20

Globular clusters and the formation of the outer Galactic halo

arxiv:astro-ph/ v1 5 Jul 2006

CAN PLANETS INFLUENCE THE HORIZONTAL BRANCH MORPHOLOGY?

Relics of the hierarchical assembly of the Milky Way

GLOBULAR CLUSTERS IN THE MILKY WAY AND DWARF GALAXIES: A DISTRIBUTION-FREE STATISTICAL COMPARISON

arxiv:astro-ph/ v1 12 Jan 1996

STRUCTURE AND DYNAMICS OF GALAXIES

THE SECOND PARAMETER : A MEMORY FROM THE GLOBULAR CLUSTER FORMATION EPOCH

Stellar Populations in the Local Group

arxiv:astro-ph/ v1 14 Oct 2003

The luminosity and mass function of the globular cluster NGC 1261

HST UV Observations of the Cores of M3 and M13 1

arxiv:astro-ph/ v2 7 Oct 2004

arxiv:astro-ph/ v1 4 Nov 2004

the inñuence of substellar objects, mainly gas giant planets, on the mass-loss geometry from asymptotic giant branch

Globular Cluster Ages and Strömgren CCD Photometry

A PRELIMINARY CLASSIFICATION SCHEME FOR THE CENTRAL REGIONS OF LATE-TYPE GALAXIES

Extreme Galaxies: Part I

Peculiar (Interacting) Galaxies

ω Centauri: Nucleus of a Milky Way Dwarf Spheroidal?

DISCOVERY OF VERY RED GIANTS IN THE FORNAX GALAXY

Lynga 7: a new disk globular cluster?*

2 Galaxy morphology and classification

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Probing Gravity in the Low Acceleration Regime with Globular Clusters

arxiv: v1 [astro-ph] 31 Jul 2007

The stellar content of the Sagittarius Dwarf Galaxy

Structure of Merger Remnants:

arxiv:astro-ph/ v1 30 Aug 2002

The Accretion History of the Milky Way

Lecture Three: Observed Properties of Galaxies, contd.! Hubble Sequence. Environment! Globular Clusters in Milky Way. kpc

Galactic Metal-Poor Halo

Young Galactic globular clusters II. The case of Palomar 12

AL 3 (BH 261): a new globular cluster in the Galaxy

The stellar content of the Sagittarius Dwarf Galaxy

The M31 Globular Cluster System

Capture of field stars by globular clusters in dense bulge regions

arxiv:astro-ph/ v1 3 Aug 2001

BH 176 and AM-2: globular or open clusters?*

Relative Frequencies of Blue Stragglers in Galactic Globular Clusters: Constraints for the Formation Mechanisms

Spheroidal (Elliptical) Galaxies MBW chap 13, S+G ch 6!

DWARF GALAXIES ALSO HAVE STELLAR HALOS

Blue straggler production in globular clusters

The nature of the star clusters ESO 93 SC08 and ESO 452 SC11

A wide-field view of the Phoenix transition type dwarf galaxy (Battaglia et al., MNRAS accepted, airxv/ )

Galaxy interaction and transformation

arxiv:astro-ph/ v1 14 Oct 1998

arxiv:astro-ph/ v1 31 Jul 1998

Looking into a nucleus with unprecedented detail (structure & kinematics): the case of the Sgr dsph. Results from:

The Star Clusters of the Magellanic Clouds

Lecture Three: Observed Properties of Galaxies, contd. Longair, chapter 3 + literature. Monday 18th Feb

The effect of primordial mass segregation on the size scale of the star clusters

Upcoming class schedule

Galaxies -- Introduction. Classification -- Feb 13, 2014

HST observations of Terzan 1: a second parameter globular cluster in the galactic bulge

THE 2MASS COLOR-MAGNITUDE DIAGRAM OF THE GLOBULAR CLUSTER LYNG8Å7 1

Environment and the Formation of Globular Cluster Systems

THE STELLAR POPULATION OF NGC 5634: A GLOBULAR CLUSTER IN THE SAGITTARIUS dsph STREAM? 1 Michele Bellazzini and Francesco R.

V, I photometry of the bulge metal-rich globular clusters NGC 6380 and Terzan 12

arxiv:astro-ph/ v1 5 Jan 1996

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13

II. Morphology and Structure of Dwarf Galaxies

Terzan 3 and IC 1276 (Palomar 7): Two metal-rich bulge globular clusters uncovered

UIT Detection of Hot Stars in the Globular Cluster NGC 362

The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the MW

THE DYNAMICAL DISTANCE TO M15: ESTIMATES OF THE CLUSTER S AGE AND MASS AND OF THE ABSOLUTE MAGNITUDE OF ITS RR LYRAE STARS

arxiv: v1 [astro-ph.ga] 25 Jan 2010

IMPACT OF A MAJOR MERGER IN THE LOCAL GROUP


ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Evolution of second generation stars in stellar disks of globular and nuclear clusters: ω Centauri as a test case

Spiral Structure. m ( Ω Ω gp ) = n κ. Closed orbits in non-inertial frames can explain the spiral pattern

arxiv: v1 [astro-ph.sr] 14 Oct 2009

M31, M33 and the Milky Way: Similarities and Differences

Astro2010 Science White Paper: The Galactic Neighborhood (GAN)

A CCD BV I color-magnitude study of the metal-rich globular cluster NGC 5927,

arxiv:astro-ph/ v1 12 Mar 1997

Globular Clusters. This list contains 135 of the brightest and largest globular clusters from the Astroleague's observing program/list.

The Age of Old Magellanic Cloud Clusters. I: NGC Deep CCD photometry down to V 24:5 is presented for the old globular cluster NGC

Unequal-mass galaxy mergers and the creation of cluster S0. galaxies

Using ground based data as a precursor for Gaia-based proper motions of satellites

Stellar Populations in the Galaxy

Fundamental Planes and Galaxy Formation

arxiv: v1 [astro-ph.ga] 17 Jun 2009

New insights into the Sagittarius stream

arxiv: v1 [astro-ph] 24 Dec 2007

ASTRONOMY AND ASTROPHYSICS. On the relative ages of galactic globular clusters

Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way

The Thick Disk-Halo Interface

arxiv:astro-ph/ v1 24 Nov 2005

Summary of Last Lecture - Local Group!

Myung Gyoon Lee. With Ho Seong Hwang (CfA) and Hong Soo Park (NAOJ) (Dept of Physics and Astronomy, Seoul National University)

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

AGE, METALLICITY AND DISTANCE OF M13 ABSTRACT

Evidence for coupling between the Sagittarius dwarf galaxy and the Milky Way warp

Transcription:

MERGERS OF GLOBULAR CLUSTERS SIDNEY VAN DEN BERGH Dominion Astrophysical Observatory 5071 West Saanich Road Victoria, British Columbia V8X 4M6, Canada vandenbergh@dao.nrc.ca Received: 1996 July 1 ; accepted:

- 2 - ABSTRACT Globular clusters with composite color-magnitude diagrams, such as NGC 1851, NGC 2808 and Fornax No. 3, might have formed by mergers. It is suggested that each of these objects had two parent clusters, one with a red horizontal branch and another with a blue horizontal branch. Such mergers could have occurred if both ancestral objects were originally members of a single dwarf spheroidal galaxy in which the internal velocity dispersion was low. Subject headings: globular clusters: mergers - globular clusters: individual (NGC 1851, NGC 2808, Fornax No. 3)

- 3-1. INTRODUCTION Globular clusters, that encounter each other at low relative velocities, will lose angular momentum and merge into a single cluster on a relatively short timescale (Sugimoto & Makino 1989). The spiraling in of their orbits is due to (1) loss of angular momentum which is carried away by escaping stars, and (2) to synchronization of the spin with orbital rotation which proceeds at the expense of orbital angular momentum. Merger calculations for ancestral globular clusters with unequal masses have been published by Makino, Akiyama & Sugimoto (1991) who find that the end products of mergers have ellipticities in the range 0.25 to 0.35. (However, the merger product may appear more circular when viewed in projection.) Mergers between globular clusters are expected to be qualitatively similar to those between spherical galaxies which have been modeled by White (1978), except that the former are usually considered to have bound elliptical orbits, whereas unbound parabolic or hyperbolic orbits are used for the latter. From his N-body simulations White concluded that galaxies formed by merger of spherical ancestors generally tend to be flattened towards their orbital plane. Furthermore, the merger products were found to have compact cores and more extended envelopes than their progenitors. However, in the case of globular clusters such extended envelopes might be trimmed back by Galactic tidal forces.

- 4 - Ancestral globular clusters that merged could have had differing compositions, ages or evolutionary histories. Their merger product might therefore exhibit a composite color magnitude diagram. Perhaps the best-known example of such a globular cluster with a composite horizontal branch is NGC 2808 (Ferrarro et al. 1990). Rood et al. (1993) show that the morphology of the horizontal branch (HB) of this cluster resembles that of a super-position of the HBs of NGC 288 and NGC 362. These clusters are examples of objects that exhibit second parameter (van den Bergh 1965, 1967, Sandage & Wildey 1967) effects in opposite directions. It has been argued (Rood et al. 1993) that the existence of clusters having both a red HB clump and an extended blue branch proves that the second parameter cannot be exclusively an age effect. This is so because, at a given metallicity, clusters with red HBs are a few Gyr younger than globulars with blue HBs. Alternatively, one could make the ad hoc assumption that stars on the horizontal branches of objects like NGC 2808 suffered bimodal mass loss. Other clusters that are known to exhibit composite color-magnitude diagrams are NGC 1851 (Walker 1992) and Cluster No. 3 in the Fornax dwarf spheroidal galaxy (Buonanno et al. 1996).

- 5-2. DISCUSSION In this letter it is proposed that globular clusters with composite HBs might have been formed by mergers between one parent cluster that had a red HB and another cluster with a blue HB. For such mergers to occur individual clusters must have quite small relative velocities. Low relative velocities will be exceedingly rare between members of the Galactic globular cluster system, which has a velocity 2-1 dispersion ~10 km s. However, such mergers could occur in dwarf spheroidal galaxies which are observed to have central velocity dispersions in the range 6.5 - -1 11 km s (Mateo 1996). In fact, Cluster No. 3 in the Fornax dwarf spheroidal galaxy (Buonanno et al. 1996), which appears to have a composite colormagnitude diagram, may be an example of a globular cluster in a dwarf spheroidal galaxy that has undergone such a merger. Fornax clusters Nos. 1 and 2 have radial density profiles (Rodgers & Roberts 1994) that appear to fit truncated King models. Rodgers & Roberts speculate that this truncation may be due to past dynamical interactions. With slightly different interaction parameters these two clusters might also have merged! However, the fact that the horizontal branch of cluster No. 1 has an intermediate color (Buonanno et al. 1996) implies that it would have been difficult to recognize the merger remnant as such from its color-magnitude diagram. One might also

- 6 - speculate that the exceptionally bright (M = -9.9) cluster M54 (= NGC 6715), V which is located near the center of the Sagittarius dwarf, owes its high luminosity to a merger. The color-magnitude diagrams (Sarajedini & Layden 1996) of the clusters Arp 2 (blue) and Terzan 7 (red), which both seem to be associated with the Sagittarius dwarf (Ibata, Gilmore & Irwin 1994), are also excellent examples of clusters that could have produced a composite color-magnitude diagram if they had merged. Possibly NGC 1851 and NGC 2808 were once located in dwarf spheroidals that were subsequently destroyed by Galactic tidal forces (NGC 1851 has R = GC 16.3 kpc, and NGC 2808 has R = 10.7 kpc). The search for remnants of such a GC dwarf spheroidal would be easier in the case of NGC 1851 (b = -35E) than for NGC 2808 (b = -11E). If age is indeed the second parameter then the red HB parent of each of the clusters with composite horizontal branches must be a few Gyr younger than the parent with a blue horizontal branch. This requirement is not inconsistent with the observation that star formation seems to have continued for many Gyr in some dwarf spheroidal (e.g. Mighell & Rich 1996). However, Walker s (1992) observations of main sequence stars in NGC 1851 appear to militate against the merger hypothesis. The small [) (B-V) ~ 0.05 mag] intrinsic width of the NGC 1851 main-sequence argues against large metallicity differences

- 7 - between individual stars in this cluster. Furthermore the lack of structure in the cluster color-magnitude diagram near the main-sequence turnoff appears to rule out age differences of more than a couple of Gyr among cluster members. Alternatively, it might be argued that the absence of large age differences in NGC 1851 militates against age being the primary cause of second parameter effects (Stetson, VandenBerg & Bolte 1996). The fact that neither NGC 1851 (, = 0.02) nor NGC 2808 (, = 0.13) have unusually large ellipticities (Frenk & Fall 1982) does not favor the merger hypothesis. However, an argument in favor of the idea that NGC 1851 was involved in a merger is provided by its unusually high central concentration of light. The N-body calculations of White (1978) showed that the final object formed by merging two initially spherical star clusters is more centrally concentrated than its ancestors. In this connection, it is of interest to note that NGC 1851 is one of the most centrally concentrated globular clusters in the outer halo of the Galaxy. According to Trager, Djorgovski & King (1993) it has C = log (r / r ) = 2.24. Only three of 50 (6%) of all clusters with R > 10 kpc listed by t c GC Trager et al. have C > 2.0. [The two other very compact outer halo globular clusters are NGC 5824 (C = 2.45) and NGC 7078 (C = 2.50)]. The other merger suspect NGC 2808 is also quite compact. Its value C = 1.77 places it among the 22% of all outer halo clusters with C > 1.75. It is concluded that the high central concentration of light in NGC 1851 and NGC 2808 gives some encouragement to

- 8 - the notion that these clusters might represent end products of mergers. Both NGC 1851 and NGC 2808 belong to the " population of van den Bergh (1993). NGC 1851 appears to be on a retrograde orbit, whereas NGC 2808 has prograde motion. It is also noted in passing that NGC 1851 is located near the Fornax-Leo-Sculptor (F-L-S) plane of Fusi Pecci et al. (1995), and that NGC 2808 lies near the intersection of the Magellanic plane and the F-L-S plane. It is tentatively concluded that some, but not all, presently available data are consistent with the hypothesis that a few Galactic globular clusters with composite color-magnitude diagrams may have been formed by mergers between parental globulars that were once located within dwarf spheroidal galaxies. It is a pleasure to thank a particularly helpful anonymous referee. I also thank Piet Hut and Eric LeBlanc for providing a number of useful references, and Peter Stetson for stimulating discussions.

- 9 - REFERENCES Buonanno, R., Ferraro, F.R., Fusi Pecci, F. & Bellazzini, M. 1996 in Formation of the Galactic Halo...Inside and Out = ASP Conference Series No. 92, Eds. H. Morrison and A. Sarajedini (San Francisco: ASP), p. 520 Ferraro, F.R., Clementini, G., Fusi Pecci, F., Buonanno, R. & Alcaino G. 1990, A&AS, 84, 59 Frenk, C.S. & Fall, S.M. 1982, MNRAS, 199, 565 Fusi Pecci, F., Bellazzini, M., Cacciari, C. & Ferraro, F.R. 1995, AJ, 110, 1664 Ibata, R.A., Gilmore, G. & Irwin, M.J. 1994, Nature, 370, 194 Makino, J., Akiyama, K. & Sugimoto, D. 1991, Ap. Spaces Sci. 185, 63 Mateo, M. 1996 in Formation of the Galactic Halo...Inside and Out = ASP Conference Series No. 92, Eds. H. Morrison and A. Sarajedini (San Francisco: ASP), p. 434 Mighell, K.J. & Rich, R.M. 1996, AJ, 111, 777 Rodgers, A.W. & Roberts, W.H. 1994, AJ, 107, 1737 Rood, R.T., Crocker, D.A., Fusi Pecci, F., Ferraro, F.R., Clementini, G. & Buonanno R. 1993 in The Globular Cluster-Galaxy Connection = ASP Conference Series No. 48, Eds. G.H. Smith and J.P. Brodie (San Francisco: ASP), p. 218

- 10 - Sandage, A. & Wildey, R. 1967, ApJ, 150, 469 Sarajedini, A. & Layden, A. 1996 in Formation of the Galactic Halo...Inside and Out = ASP Conference Series, Vol. 92, eds. H. Morrison and A. Sarajedini (San Francisco: ASP), p. 297 Stetson, P.B., VandenBerg, D.A. & Bolte, M. 1996, PASP, 108, 560 Sugimoto, D. & Makino, J. 1989, PASJ, 41, 1117 Trager, S.C., Djorgovski, S. & King, I.R. 1993, in Structure and Dynamics of Globular Clusters = ASP Conference Series Vol. 50, eds. S.G. Djorgovski & G. Meylan (San Francisco: ASP), p. 347 van den Bergh, S. 1965, JRASC, 59, 151 van den Bergh, S. 1967, PASP, 79, 460 van den Bergh, S. 1993, ApJ, 411, 178 Walker, A. 1992, PASP, 104, 1063 White, S.D.M. 1978, MNRAS, 184, 185