Electrokinetic Flow Control and Propulsion for MAVs

Similar documents
High-Fidelity Computational Simulation of Nonlinear Fluid- Structure Interaction Problems

Direct Numerical Simulation of Aeolian Tones

P. Kestener and A. Arneodo. Laboratoire de Physique Ecole Normale Supérieure de Lyon 46, allée d Italie Lyon cedex 07, FRANCE

Use of Wijsman's Theorem for the Ratio of Maximal Invariant Densities in Signal Detection Applications

Report Documentation Page

High Resolution Surface Characterization from Marine Radar Measurements

Attribution Concepts for Sub-meter Resolution Ground Physics Models

Mine Burial Studies with a Large Oscillating Water-Sediment Tunnel (LOWST)

Analysis Comparison between CFD and FEA of an Idealized Concept V- Hull Floor Configuration in Two Dimensions. Dr. Bijan Khatib-Shahidi & Rob E.

Dynamics of Droplet-Droplet and Droplet-Film Collision. C. K. Law Princeton University

Broadband matched-field source localization in the East China Sea*

HIGH-POWER SOLID-STATE LASER: LETHALITY TESTING AND MODELING

Understanding Near-Surface and In-cloud Turbulent Fluxes in the Coastal Stratocumulus-topped Boundary Layers

Report Documentation Page

Thermo-Kinetic Model of Burning for Polymeric Materials

Reverse Ion Acceleration by Laser-Matter Interaction

A report (dated September 20, 2011) on. scientific research carried out under Grant: FA

REGENERATION OF SPENT ADSORBENTS USING ADVANCED OXIDATION (PREPRINT)

Report Documentation Page

Super-Parameterization of Boundary Layer Roll Vortices in Tropical Cyclone Models

System Reliability Simulation and Optimization by Component Reliability Allocation

Diagonal Representation of Certain Matrices

INFRARED SPECTRAL MEASUREMENTS OF SHUTTLE ENGINE FIRINGS

Super-Parameterization of Boundary Layer Roll Vortices in Tropical Cyclone Models

Near-Surface Cusp Confinement of Micro-Scale Plasma, Richard Wirz

Review of Micro-Propulsion Ablative Devices

Extension of the BLT Equation to Incorporate Electromagnetic Field Propagation

Experimental and Theoretical Studies of Ice-Albedo Feedback Processes in the Arctic Basin

Quantitation and Ratio Determination of Uranium Isotopes in Water and Soil Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Crowd Behavior Modeling in COMBAT XXI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

CRS Report for Congress

FRACTAL CONCEPTS AND THE ANALYSIS OF ATMOSPHERIC PROCESSES

Improvements in Modeling Radiant Emission from the Interaction Between Spacecraft Emanations and the Residual Atmosphere in LEO

REPORT DOCUMENTATION PAGE

Experimental and Theoretical Studies of Ice-Albedo Feedback Processes in the Arctic Basin

Predictive Model for Archaeological Resources. Marine Corps Base Quantico, Virginia John Haynes Jesse Bellavance

Parameterizing the Effects of Upper-Ocean Large Eddies on Air-Sea Interaction

Metrology Experiment for Engineering Students: Platinum Resistance Temperature Detector

Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates

Impact of Typhoons on the Western Pacific Ocean DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds

A GENERAL PROCEDURE TO SET UP THE DYADIC GREEN S FUNCTION OF MULTILAYER CONFORMAL STRUCTURES AND ITS APPLICATION TO MICROSTRIP ANTENNAS

Generation and Propagation of Internal Solitary Waves on the Continental Shelf and Slope

Comparative Analysis of Flood Routing Methods

Analysis of Infrared Measurements of Microbreaking and Whitecaps

A Bound on Mean-Square Estimation Error Accounting for System Model Mismatch

Modeling the Impact of Extreme Events on Margin Sedimentation

SW06 Shallow Water Acoustics Experiment Data Analysis

Understanding Near-Surface and In-Cloud Turbulent Fluxes in the Coastal Stratocumulus-Topped Boundary Layers

DIRECTIONAL WAVE SPECTRA USING NORMAL SPREADING FUNCTION

Volume 6 Water Surface Profiles

Modeling of Coastal Ocean Flow Fields

ELECTRON BEAM AND PULSED CORONA PROCESSING OF VOLATILE ORGANIC COMPOUNDS AND NITROGEN OXIDES

DSMC Calculation of Vortex Shedding behind a Flat Plate with a New Intermolecular Collision Scheme

REPORT DOCUMENTATION PAGE

USMC Enlisted Endstrength Model

Determining the Stratification of Exchange Flows in Sea Straits

Aviation Weather Routing Tool: A Decision Aid for Manned/Unmanned Aircraft Routing

STUDY OF DETECTION LIMITS AND QUANTITATION ACCURACY USING 300 MHZ NMR

LISA: THE LASER INTERFEROMETER SPACE ANTENNA

Wavelets and Affine Distributions A Time-Frequency Perspective

Topographic Effects on Stratified Flows

An Observational and Modeling Study of Air-Sea Fluxes at Very High Wind Speeds

Real-Time Environmental Information Network and Analysis System (REINAS)

Performance Modeling of a Piezohydraulic Actuator with Active Valves

Scattering of Internal Gravity Waves at Finite Topography

Molecular Characterization and Proposed Taxonomic Placement of the Biosimulant 'BG'

Catalytic Oxidation of CW Agents Using H O in 2 2 Ionic Liquids

Predicting Tropical Cyclone Formation and Structure Change

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Periodic Magnetoresistance Oscillations in Side-Gated Quantum Dots

Ocean Acoustics Turbulence Study

Sensitivity of West Florida Shelf Simulations to Initial and Boundary Conditions Provided by HYCOM Data-Assimilative Ocean Hindcasts

DETECTION OF THE GRAVITATIONAL REDSHIFT OF THE CESIUM FREQUENCY STANDARD AT CRL

Analysis of Mixing and Dynamics Associated with the Dissolution of Hurricane-Induced Cold Wakes

LAGRANGIAN MEASUREMENTS OF EDDY CHARACTERISTICS IN THE CALIFORNIA CURRENT

Vortex Rossby Waves and Hurricane Evolution in the Presence of Convection and Potential Vorticity and Hurricane Motion

Laser Ablation of Metal Doped Polymers with CO 2 Laser

Award # N LONG TERM GOALS

Surface Fluxes and Wind-Wave Interactions in Weak Wind Conditions

Sea Ice Model for Marginal Ice Zone

EFFECTS OF LOCAL METEOROLOGICAL VARIABILITY ON SURFACE AND SUBSURFACE SEISMIC-ACOUSTIC SIGNALS

Mass Transport by Second Mode Internal Solitary Waves

HIGH PERFORMANCE CONTROLLERS BASED ON REAL PARAMETERS TO ACCOUNT FOR PARAMETER VARIATIONS DUE TO IRON SATURATION

VLBA IMAGING OF SOURCES AT 24 AND 43 GHZ

INTERACTION AND REMOTE SENSING OF SURFACE WAVES AND TURBULENCE

REPORT DOCUMENTATION PAGE. Theoretical Study on Nano-Catalyst Burn Rate. Yoshiyuki Kawazoe (Tohoku Univ) N/A AOARD UNIT APO AP

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

PIPS 3.0. Pamela G. Posey NRL Code 7322 Stennis Space Center, MS Phone: Fax:

Hurricane Wave Topography and Directional Wave Spectra in Near Real-Time

The Effects of Magnetic Storm Phases on F-Layer Irregularities from Auroral to Equatorial Latitudes

Coupled Ocean-Atmosphere Modeling of the Coastal Zone

Estimation of Vertical Distributions of Water Vapor and Aerosols from Spaceborne Observations of Scattered Sunlight

COASTAL MIXING AND OPTICS

NAVGEM Platform Support

Fluid-Induced Nonlinear Dynamic Tensioning of Cables

Grant Number: N IP To compare obtained theoretical results with NPAL experimental data.

USER S GUIDE. ESTCP Project ER

REPORT DOCUMENTATION PAGE

Closed-form and Numerical Reverberation and Propagation: Inclusion of Convergence Effects

Transcription:

Electrokinetic Flow Control and Propulsion for MAVs B. Göksel, I. Rechenberg, R. Bannasch Institute of Bionics and Evolution Technology Technical University of Berlin MAV Workshop Micro Aerial Vehicles Unmet Technological Requirements September 22-24, 2003 Elmau Castle/Germany

Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 23 JUL 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Electrokinetic Flow Control and Propulsion for MAVs 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Institute of Bionics and Evolution Technology Technical University of Berlin 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR S ACRONYM(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 11. SPONSOR/MONITOR S REPORT NUMBER(S) 13. SUPPLEMENTARY NOTES See also ADM001689, EOARD-CSP-03-5073 Micro Air Vehicle Workshop., The original document contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified 18. NUMBER OF PAGES 29 19a. NAME OF RESPONSIBLE PERSON Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

List of Contents Aerodynamics of Micro Aerial Vehicles Possibilities for Active Flow Control Video Presentation Outview Literature

Aerodynamics of Micro Aerial Vehicles - Micro Aerial Vehicles (MAV) operate at chord Reynolds numbers below 200000 - Early laminar flow separation at the leading edge - Compact geometry (low aspect-ratio below 2) gives rise to strong 3D effects Nonlinear lift characteristics and low aerodynamic efficiency MAVs supported from overdimensioned propulsion and are hanging on the thrust vector Which possibilities for active flow control are available to improve Flight performance of Micro Aerial Vehicles?

Possibilities for Active Flow Control

1. Unsteady Lift und Propulsion Using Flapping Wing (Mechanical Wave Propulsion) t> () ( ) <u) ( )* u/u. o 0(j Ornithopter-Flightmodel from Prof. DeLaurier (Source: Uni Toronto) Vortex Street for Drag, Thrust and Zero Drag (Source: Jones, K. D.) 2 ^.» * > i * See for further references: http://www.ism.tu-bs.de/wrld/mneef/neef.html Jones, K. D.; Castro, B.M.; Mahmoud, 0.; Pollard, S.J.; Platzer, M.F.; Neef, M.F.; Gonet, K.; Hummel, D. (2002) A collaborative numerical and experimental investigation of flapping-wing propulsion. AIAA Paper 2002-0706, 40th Aerospace Sciences Meeting & Exhibit, Reno, NV.

2. Active Flow Control Using Piezoelectric Synthetic Jet Actuators Unsteady Excitation of the Laminar Boundary Layer Using Piezoelectric Actuators at f = 250 Hz Bottom view of the piezoelectric synthetic jet showing the actuator side and lead wires NACA 0012 wind tunnel specimen with integrated piezoelectric synthetic jet actuators Source: http://www.spa-inc.net/smtdmemstest.htm

3. Active Flow Control Using Electrostatic Fields Acceleration of weakly-ionizd air in electric tension fields to stabilize the laminar boundary layer Self-adhesive Aluminium Foil Speed Range in Experiments: 1,1-11,0 m/s Chord Reynolds Number Range: 13250-132500

Mechanism of Air Ionisation around Corona Wires «JCV\ 6(ftSM/6MftA*- dbcovvlr

Current-Voltage Characteristics for Corona Wire with Diameter a = 0.15 mm Spannung U [kv] 17 16 15 14 13 12 11 10 Current-Voltage Characteristics for Corona Wire with Diameter a = 150µm and Electrode- Distance d = 25 mm to Leading Edge at Zero Air Speed. 9 8 7 6 0.0 0.1 0.2 0.3 0.4 0.5 Koronastrom I [ma] u = 0 m/s d = 2,5 cm (Draht, Leitkante) At Constant Wire Diameter the Ionic Wind Velocity is proportional to Square Root of the Corona Current. Electrical Power per 50 cm Wire: I = 0,48 ma, U = 16,5 kv P = 7,9 Watts I = 0,30 ma, U = 14,4 kv P = 4,3 Watts I = 0.24 ma, U = 13,4 kv P = 3,2 Watts Goal for MAV-Application: As small as possible fine micro pikes to reduce power at constant corona current.

Experiment Set-Up at the Institute of Bionics, TU Berlin Grand Wind Tunnel with Outlet Nozzle d=1200 mm. Minimal Speed: 5 m/s Maximum Speed: 15 m/s Small Wind Tunnel with Outlet Nozzle d=600 mm. Minimal Speed: 0 m/s Maximum Speed: 6 m/s

Separation Delay and Lift Enhancement at u=6,6 m/s - Lift Enhancement at alpha = 19 is 127% - Drag Coefficient decreases by 18% Increase of Aerodynamic Efficiency by 177% - At alpha = 0 with E-Field Drag Reduction by 10,1 % α Auftriebs- und Widerstandsbeiwerte ca, cw 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Draht (+); 2 cm Alu-Leitkante (-); Kammelektrode (+,0); 5,5 cm Alu-Hinterkante (-) alles geladen: 16,3 kv; 0,492 ma nur Draht: 17,3 kv: 0,506 ma ca: alles geladen cw: alles geladen ca: nur Draht cw: nur Draht u = 6,6 m/s ca: 0,00 kv; 0,000 ma Auftriebsbeiwert ca 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Draht (+); 2 cm Alu-Leitkante (-); Kammelektrode (+); 5,5 cm Alu-Hinterkante (-) ca(cw): 0,00 kv; 0,000 ma ca(cw): 16,3 kv; 0,492 ma u = 6,6 m/s 23 0.0 cw: 0,00 kv; 0,000 ma 0 10 20 30 40 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Anstellwinkel alpha [ ] Widerstandsbeiwert cw Additional Electrode Pair at Trailing Edge has Effect of Jet Flap.

Separation Delay and Lift Enhancement at u=5,5 m/s -Turbulator delays laminar separation up to alpha = 21. But: - max. lift coefficient 15% lower than with corona discharge - drag increase at critical angles of attack At alpha = 0 drag coefficient increase by 6,6 %. Degradation of aerodynamic efficiency by 11,8% Turbulence Generator α Auftriebs- und Widerstandsbeiwerte ca, cw 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Draht (+); 2 cm Alu-Leitkante (-); Kammelektrode (+); 5,5 cm Alu-Hinterkante (-) ca: 16,3 kv; 0,488 ma u = 5,5 m/s cw: 16,3 kv; 0,488 ma ca: 0,0 kv, T-Generator 25 21 9 ca: 0,00 kv; 0,000 ma cw: 0,00 kv; 0,000 ma 0 10 20 30 40 Auftriebsbeiwert ca Draht (+); 2 cm Alu-Leitkante (-); Kammelektrode (+); 5,5 cm Alu-Hinterkante (-) 1.4 1.2 u = 5,5 m/s 1.0 0.8 0.6 0.4 ca(cw): ohne Feld, ohne Zackenband 0.2 ca(cw): ohne Feld, mit Zackenband ca(cw): 16,3 kv; 0,488 ma; o. Z-Band 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Anstellwinkel alpha [ ] Widerstandsbeiwert cw At alpha=0 with Corona Discharge (without Turbulator) Decrease of Drag Coefficient by 28%.

Laser-Light-Sheet Smoke Wire Visualisation alpha = 12 ; u = 6,6 m/s; U = 16,3 kv; I = 0,492 ma alpha = 12 ; u = 6,6 m/s; U = 0,00 kv; I = 0,000 ma alpha = 20 ; u = 6,6 m/s; U = 16,6 kv; I = 0,497 ma alpha = 20 ; u = 6,6 m/s; U = 0,00 kv; I = 0,000 ma Up to alpha = 15 like in a fluidic flip-flop-switch flow can be separated, reattached and again separated (see video presentation).

Separation Delay and Lift Enhancement at u=3,3 m/s - at u = 1,1 4,4 m/s Turbulator without Effect on Laminar Flow Separation - Corona Discharge shows dramatic Effect on Lift and Drag Coefficient - at alpha = 23 maximum Lift Coefficient Enhancement by 191% - at alpha = 0 Drag Coefficient Reduced by 40% - at alpha = 4 Aerodynamic Efficiency Increased by 170% and at alpha = 8 by 198% Auftriebs- und Widerstandsbeiwerte ca, cw 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Draht (+); 2 cm Alu-Leitkante (-); Kammelektrode (+); 5,5 cm Alu-Hinterkante (-) ca: 16,4 kv; 0,484 ma cw: 16,4 kv; 0,484 ma 27 u = 3,3 m/s ca: 0,00 kv; 0,000 ma cw: 0,00 kv; 0,000 ma 0 10 20 30 40 Auftriebsbeiwert ca Draht (+); 2 cm Alu-Leitkante (-); Kammelektrode (+); 5,5 cm Alu-Hinterkante (-) 1.4 1.2 u = 3,3 m/s 1.0 0.8 0.6 0.4 0.2 ca(cw): 0,00 kv; 0,000 ma ca(cw): 16,4 kv; 0,484 ma 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Anstellwinkel alpha [ ] Widerstandsbeiwert cw

Separation Delay and Lift Enhancement at u=1,65 m/s - at alpha = 27 maximum Lift Coefficient Enhancement by 220%, ca_max = 2,07 - at alpha = 0 Drag Coefficient Reduced by 90,5% Lift Coefficient Increased by 133% Increase of Aerodynamic Efficiency by 2350% 2.4 Draht (+); 2 cm Alu-Leitkante (-); Kammelektrode (+); 5,5 cm Alu-Hinterkante (-) ca: 16,8 kv; 0,496 ma 2.4 Draht (+); 2 cm Alu-Leitkante (-); Kammelektrode (+); 5,5 cm Alu-Hinterkante (-) Auftriebs- und Widerstandsbeiwerte ca, cw 2.0 1.6 1.2 0.8 0.4 cw: 16,8 kv; 0,496 ma 29 u = 1,65 m/s ca: 0,00 kv; 0,000 ma Auftriebsbeiwert ca 2.0 1.6 1.2 0.8 0.4 u = 1,65 m/s ca(cw): 0,00 kv; 0,000 ma 0.0 cw: 0,00 kv; 0,000 ma 0 10 20 30 40 ca(cw): 16,8 kv; 0,496 ma 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Anstellwinkel alpha [ ] Widerstandsbeiwert cw Ionic wind generates additional circulation (super circulation) by Acceleration on Suction Side. Ionic wind velocity now in the range of wind tunnel air velocity.

Separation Delay and Lift Enhancement at u=1,1 m/s - at alpha = 32 Lift Coefficient Enhancement by 293%, maximum Lift Coefficient of 2,57 - at alpha = 0 Drag Coefficient even Reduced by 113% Wing Generates Thrust up to alpha = 6!! Auftriebs- und Widerstandsbeiwerte ca, cw 3 2 1 0 Draht (+); 2 cm Alu-Leitkante (-); Kammelektrode (+); 5,5 cm Alu-Hinterkante (-) ca: 0,00 kv; 0,000 ma 32 cw: 0,00 kv; 0,000 ma ca: 17,3 kv; 0,504 ma cw: 17,3 kv; 0,504 ma u = 1,1 m/s -I * t $ «" 0 10 20 30 40 Anstellwinkel alpha [ ] Ionic Wind Velocity > Wind Tunnel Air Velocity Vortex Street withthrust and Zero Drag (Source: Jones, K. D.)

Picture Sequences to Smoke Wire Visualisation Controlled separation can be used to study nature of vortex generation.

Video Presentation electrofluid1.avi (see also http://www.bionik.tu-berlin.de/user/goeksel/electrofluid1.htm)

Outview

Miniaturised High Voltage Power Supplies For Micro-UAVs: ic Q-Serie: 0 to +/-5,000 VDC 0,5 Watts Weightt: 4,25 g 0 to +/-10,000 VDC 0,5 Watts Weight: 28,3 g For Mini-UAVs: E-Serie: 0 to +/-12,000 VDC 3 Watts Weight: 85 g F-Serie: 0 to +/-12,000 VDC 10 Watts Weight: 142 g Source: http://www.emcohighvoltage.com/

Miniaturised Field Electron Emitter Cold Field Electron Emission from Microstructured Surfaces (Fowler-Nordheim Tunnel Effect): - Adoption of Organic Surface Films from Carbon Nano Tubes - Adoption of Microstructured Metal-Sheets with Carbon-Shield (Fullerenes or amorphe Diamond-Layers) At low high voltages already emission rates of more than 3 ma/cm² achievable (compare Basic Research Experiments with Corona Wire with maximum Current Density of 0.5 ma/2.4 cm²). (Highly Energetic Diamond Emitter even reach ka/cm².) Key Words: Field (Electron) Emission, Multi-Wall Carbon Nanotube Films, Emitting Diamond Films, Microfabricated Emitters, Carbon Cold Cathode, Solid State Emitter

Miniaturised Field Electron Emitter - Self-activation of cold field electron emission on suitable surfaces through natural friction charging and turbulence in the boundary layer. Formation of Electric Double-Layers, which could be moved by use of electric voltage field actuators. See also Patent of Mr. Donatus Dornier, Dornier System GmbH German Patent 1956760 (7th February 1974) Einrichtung zur Beeinflussung der Grenzschicht eines Strömungsmittels

Mini Aerial Vehicle as Compact Demonstrator Wing Airfoil: Eppler E338 Length = 0,92 m, Span Width = 0,85 m, Wing Area A=0,5 m²

Unsteady Lift and Propulsion Using Electrokinetic Wave Propulsion Possible Fixed-Wing Simulation (Bionic Transformation) of Mechanical Wave Propulsion Through Waving ( Flapping ) Travelling Electrostatic Soliton-Fields. Sin (tot + 4j») Plasma Convection Upper electrodes Lower electrode (metal sheet) Peristaltic Plasma-Pumping with travelling electrostatic waves (Source: Karakaya et al.) Plasma Speeds up to 100 m/s achievable. Todays MAVs operate with maximum 25 m/s. Is the Development of an All Electrokinetically Propelled Micro-Aerial Vehicle Possible?

First Steps to All Electrokinetic MAV Propulsion First Lifter Experiments at the Institute of Bionics and Evolutiontechnique, TU Berlin 2002 See also video: http://www.bionik.tuberlin.de/user/goeksel/lifter3.avi

First Steps to All Electrokinetic MAV Propulsion University of Alabama Huntsville: http://www.eb.uah.edu/ipt/previouspages/2001.htm The Patrocinor uses a completely silent ionic propulsion system powered by the next generation of fuel cells. An exoskeleton framework has sensors imbedded into it and is comprised of layers of radar reducing and high strength materials. See also paper: AIAA 2001-3433 Paper - Unmanned Air Ground Vehicle (pdf)

Electroaerodynamic Coanda Effect Cylinder Wake Flow Control Experiments to Active Cylinder Wake Flow Control Using Electric Field Actuators at the Institut of Bionics and Evolutiontechnique, Technical University of Berlin

Further Applications in Rotational Flows - New NASA Goals for Smart Efficient Components (see http://www.grc.nasa.gov/www/aero/base/sec.htm) Demonstrate Plasma Glow Discharge Device for LPT Flow Control (09/01) Demonstrated operation of a plasma glow discharge device in relevant LPT flow environment - Research at the University of Notre Dame (see http://www.nd.edu/~ame/facultystaff/corke,thomas.html) Separation Control for Rotocraft using a Glow-Discharge Flat Array This involves the development of a "flat-array plasma actuator" as an unsteady electrostatic pump which is designed to energize the low momentum fluid in a separated flow and cause reattachment. This has the advantages of having a very high frequency band-width, high energy density, and no moving parts. The applications for this are primarily directed towards helicopter which includes: suppressing advancing stall of rotors. Controlling flow separations on multifaced surfaces which are designed for a low radar (stealth) signature, and controlling separations in bends of internal air-inlet flows.

Literature [1] Mueller, T.J. (ed), Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Progress in Aeronautics and Astronautics Volume 195, AIAA Publishing, Reston, VA, 2001. [2] Goeksel, B. (2002) Active Flow Control to Improve the Flight Performance of Micro Aerial Vehicles. DGLR-Fachausschuss-Sitzung Unbemannte Flugzeuge Einsatzmöglichkeiten, Flugleistungen und Flugeigenschaften DLR Braunschweig (in German). [3] Karakaya, F.; Sherman, D. M.; Roth, J. R. (1999) A Polyphase Low Frequency RF Power Supply for a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). 26 th International Conference on Plasma Science (ICOPS 99), Paper 3P35, Monterey,CA. [4] Selig, M.; Lyon, C.; Giguere, P.; Ninham, C.; and Guglielmo, J. Summary of Low Speed Airfoil Data, Vol. 2, SoarTech Publ., Virginia Beach, VA, 1996. [5] AGARD, Low Reynolds Number Vehicles, AGARDograph AG-288, 1985.