Supporting Information

Similar documents
Chapter 4 Study of solute-solute and solute-solvent interactions of l-histidine in aqueous-sucrose solutions at different temperatures using

SHORT COMMUNICATION. Ultrasonic Studies of Amino Acids in Aqueous Sucrose Solution at Different Temperatures

CHAPTER INTRODUCTION

Evaluation of apparent and partial molar volume of potassium ferro- and ferricyanides in aqueous alcohol solutions at different temperatures

CHAPTER -VIII. Ion-Solvent Interactions of Sodium Molybdate in Oxalic acid-water Systems at Various Temperatures.

CHAPTER - VI. Apparent Molar Volumes and Viscosity B-Coefficients of Glycine in Aqueous Silver Sulphate Solutions at T = (298.15, , 318.

CHAPTER 6 THERMODYNAMIC AND TRANSPORT PROPERTIES OF GLYCINE IN AQUEOUS SOLUTIONS OF SODIUM CARBONATE AT DIFFERENT TEMPERATURES

MOLECULAR INTERACTION STUDIES OF GLYCYLGLYCINE IN AQUEOUS SODIUM HALIDE SOLUTIONS AT 303, 308 AND 313K

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

Pelagia Research Library

Volumetric and Transport Properties Of L-Isoleucine In Aqueous. Ethanol

MATERIALS AND METHODS

Exploration of Diverse Interactions of Some Vitamins in Aqueous Mixtures of Cysteine

Partial molar properties of homologous dicarboxylic acids in aqueous acetone solutions at different temperatures

Ultrasonic Studies of Some Biomolecules in Aqueous Guanidine Hydrochloride Solutions at K

Solvation Studies on Sodium Dodecyl Sulphate in aqueous solutions at different temperatures

Chapter 12 & 13 Test Review. Bond, Ionic Bond

Pelagia Research Library. Der Chemica Sinica, 2016, 7(4): Kanchan S Hade*

Academic Sciences. International Journal of Chemistry Research

A study of partial molar volumes of citric acid and tartaric acid in water and binary aqueous mixtures of ethanol at various temperatures

Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures

Density & viscosity studies of Fluoxetine hydrochloride in mixed binary solvent in presence of additives

Physico-Chemical Studies of Some Bio-active Solutes in Pure Methanoic Acid

Comparative Study On Hydration Properties Of Ammonium Sulphate With Potassium Nitrate And Ammonium Sulphate With Sodium Nitrate Solutions At 303k

EFFECT OF TEMPERATURE ON THE VOLUMETRIC STUDIES OF SOME THIOCYANATES IN WATER

REFRACTIVE INDEX, MOLAR REFRACTION AND POLARIZABILITY OF CIPROFLOXACIN HYDROCHLORIDE IN AQUEOUS-GLYCINE SOLUTIONS

Vaneet Dhir 1,a, Jasbinder Kaur 1, R. P. Singh Grewal 2* Abstract. *Correspondence R. P. Singh Grewal,

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration:

2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS

ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ

Ultrasonic Studies on Molecular Interaction of Arginine in Aqueous Disaccharides at K

ULTRASONIC STUDIES ON SOME ELECTROLYTES IN N,N, DIMETHYLFORMAMIDE +WATER MIXTURES AT 303K ABSTRACT

2. Match each liquid to its surface tension (in millinewtons per meter, mn*m -1, at 20 C).

Research Article. Volumetric study of strong electrolytes-metal chlorides and metal sulphates in aqueous medium at different temperatures

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

Thermodynamic and Viscometric Study of Calix (6) Arene and their Derivatives

LIMITING IONIC PARTIAL MOLAR VOLUMES OF R 4 N + AND I IN AQUEOUS METHANOL AT K

Practice Midterm Exam 200 points total 75 minutes Multiple Choice (3 pts each 30 pts total) Mark your answers in the space to the left:

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chemistry 111 Syllabus

Chem 1100 Pre-Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.

ULTRASONIC AND MOLECULAR INTERACTION STUDIES OF CINNAMALDEHYDE WITH ACETONE IN n-hexane

Thermodynamic interactions of l-histidine in aqueous fructose solutions at different temperatures

Apparent Molar Volume and Viscometric Study of Ammonium Sulphate in 10% DMF - Water at Temperature and K

CHAPTER - VII. Ion-Solvent and Ion-Ion Interactions of Phosphomolybdic Acid in Aqueous Solution of Catechol at , and K.

Chapter 11 Review Packet

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

Solids, Liquids and Gases

Modeling in Solution. Important Observations. Energy Concepts

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 111 Dr. McCorkle Exam #1. While you wait, please complete the following information:

Midterm II Material/Topics Autumn 2010

Content : Properties of amino acids.. Separation and Analysis of Amino Acids

WYSE Academic Challenge Sectional Chemistry 2005 SOLUTION SET

SUPPORTING INFORMATION

or supersaturatedsaturated Page 1

Density modelling NH 3 -CO 2 -H 2 O liquid mixtures. Technology for a better society

Water, water everywhere,; not a drop to drink. Consumption resulting from how environment inhabited Deforestation disrupts water cycle

Molecular Selective Binding of Basic Amino Acids by a Water-soluble Pillar[5]arene

Study on Diverse Interactions of Vitamin Molecules Insight into H 2 o + [Epy] Bf 4 Systems by Physicochemical Contrivance

Copyright 2018 Dan Dill 1

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

Factors that Effect the Rate of Solvation

Chem 1046 February 27, 2001 Test #2

Monalisa Das, Smrutiprava Das * and Ajaya Kumar Patnaik Department of Chemistry, Ravenshaw University, Cuttack , Odisha, India

Supplementary Information

Downloaded from

CHEMISTRY ATAR COURSE DATA BOOKLET

The Liquid Vapor Interface

CATALAYTIC AND VISCOMETRIC BEHAVIOR OF CONCENTRATED HYDROCHLORIC ACID IN HYDROLYSIS OF ESTER

Chem 1515 Section 2 Problem Set #4. Name Spring 1998

1. When two pure substances are mixed to form a solution, then always

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form

Self-Assembly of Single Amino acid-pyrene Conjugates with Unique Structure-Morphology Relationship

Available online Research Article

ANSWERS CIRCLE CORRECT SECTION

Key Multiple Choice (5 pts each)

Initial concentration. of C/mol dm 3

Molecular Interaction Study of Binary Solutions of n-butyl Acetate and Isopropanol at Various Temperatures



Thermodynamics and transport properties of L-Proline in water and binary aqueous mixtures of acetonitrile at K.

CHEM-102 EXAM I Name Fall 2004 Section

Ultrasonic studies of aqueous solutions of poly diallyl dimethyl ammonium chloride

PRACTICE QUESTIONS FOR EXAM I Spring 2014 This has been updated after Monday s lecture (2/17/14)

Ch 1-6 Working With Numbers; Scientific Notation pp Ch 1-5 to 1-6 Significant Figures pp 22-37

Chem 4501 Introduction to Thermodynamics, 3 Credits Kinetics, and Statistical Mechanics

Dielectric Relaxation Studies of Binary Mixtures of Ethanol and Chlorobenzene in Benzene Solution from Microwave Absorption Data

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Journal of Chemical and Pharmaceutical Research, 2013, 5(7): Research Article

Thermodynamics I - Enthalpy

Studies on Acoustic Parameters of Ternary Mixture of Dimethyl Acetamide in Acetone and Isobutyl Methyl Ketone using Ultrasonic and Viscosity Probes

Find molality: mass percent. molality Assume a basis of 100g solution, then find moles ammonium chloride: Find mass water: So molality is:

Effect of KCl and KNO 3 on Partial Molal Volumes and Partial Molal Compressibilities of Some Amino Acids at Different Temperatures

Ultrasonic studies of molecular interactions in binary mixtures of n-butanol with water at different temperatures (308K, 318K and 328K)

Thermodynamic Study of Copper Sulphate and Zinc Sulphate in Water and Binary Aqueous Mixtures of Propylene Glycol

Study of molecular interactions between L-aspartic acid and aqueous 1,2-propanediol solution at T = K

Int. J. Pharm. Sci. Rev. Res., 35(1), November December 2015; Article No. 07, Pages: 25-29

Sectional Solutions Key

Transcription:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 Supporting Information Theory: The physical properties of inary mixtures in different mass fractions (w n =.1,.3,.5, where n=1, 2 for α- and β-cd respectively) of aqueous α- and β-cd solutions at 298.15K has een reported in Tale S1. The experimental measured values of density, viscosity, refractive index of chosen three α-amino acids (i.e., L-Lys, L-Phe, L-Glu) in different mass fractions of aqueous α- and β-cd mixture, as a function of concentration (molarity) has een listed in Tale S2. Surface tension The concentrations at which the inclusion occurred (the reak point of the surface tension) have een calculated y solving the equation of two straight lines, and represented in Tale 1. For instance, in case of lysine in w 1 =.1 mass fraction of α-cyclodextrin γ = -37.8 c + 74.6 γ = -134. c + 67.72 γ = 62.84 and c =.364. Apparent molar volume The apparent molar volumes V were determined from the solutions densities using the equation and given in Tale S3. V M / 1 / m (1) where M is the molar mass of the amino acids, m is the molality of the solution, and are the density of the solution and aq. α- and β-cd mixture respectively. The limiting apparent molar volumes V were otained y a least-square treatment to the plots of versus m using the Masson equation 1 V and shown in Tale S4. * V V SV m The standard deviations (σ) were determined using the following equation: 2 (Yexp Y os) / (N 1) where N is the numer of data points. (2) (3)

Contriutions of the zwitterionic end group, CH 2 groups and other alkyl chains of the amino acids to The V V value of zwitterionic end group and methylene group, and other alkyl chain of the amino acids were estimated from V V 3 n c V 2 (NH, COO ) (CH ) V ( R ) (NH V V 3, COO ) V (CH) V ( R ) V V 3 V V 2 (NH, COO ) (CH) (CH ) (4) (5) (6) Hydration Numer estimated from apparent molar volume The numer of water molecules (n H ) hydrated to amino acids can e estimated from the value of measured standard partial molar volume. The values of can e expressed as 2 (amino acid) (int) (elect) (7) V V V V of studied amino acids here (int) is intrinsic partial molar volumes of amino acids and (elect) is electrostriction V partial molar volume as a result of hydration of amino acids. The V (int) consists of two terms: van der Waals volume and volume due to packing effects. The values of V (int) for the amino acids were calculated from their crystal molar volume y 2 using the following relationship, V (int) V V = (.7.634) (cryst) (8) where,.7 is the packing density in an organic crystal and.634 is the packing density of randomly packed spheres. The molar volume of crystals V (cryst) was calculated using the crystal densities of the amino acids represented y Berlin and Pallansch. 3 The hydration numers is estimated using the relation H V (elect) ( e ) n / V V where is the molar volume of the electrostricted water and is the molar volume of ulk V e water. This model implies that for every water molecules taken from the ulk phase to the surroundings of amino acid, the volume is decreased y ( V V ). The value of ( V V ) is calculated 2 to e -3. or -3.3, at 298.15K respectively. The otained n H values are listed in Tale S6. e V (9) e

Viscosity The experimental viscosity data for the studied systems are listed in Tale S2. The relative viscosity (η r ) has een analyzed using the Jones-Dole equation 4 (/ o - 1)/ m = (η r - 1)/ m = A + B m (1) where η r =/ o, and are the relative viscosities, the viscosities of the ternary solutions (amino acid + aq. β-cd) and inary aqueous mixture (aq. β-cd) and m is the molality of the amino acids in ternary solutions. A and B are empirical constants known as viscosity A- and B- coefficients, which are specific to solute-solute and solute-solvent interactions, respectively, are estimated y least-square method y plotting ( 1) / m against m, and reported in Tale S4. The B-coefficients of zwitterionic group B(NH 3+, COO - ), the methylene group B(CH 2 ), and other alkyl group have een resolved as follows B = B(NH 3+,COO - ) + n c B(CH 2 ) (11) B(R) = B- (NH 3+,COO - ) -B(CH) (12) B(R) = B(NH 3+,COO - ) +-B(CH) - B(CH 2 ) (13) r Refractive index The molar refraction, R can e evaluated from the Lorentz-Lorenz relation 5 M 2 2 M D D R = (n -1)/(n + 2) (M/ ) where R, n, M and are the molar refraction, the refractive index, the molar mass and the M D density of solution respectively. The Limiting molar refraction ( R ) estimated from the following, 6 M (14) R R R m M M S (15) References: 1. D. O. Masson, Phil Mag., 1929, 8, 218 226. 2. F. J. Millero, A. L. Surdo and C. Shin, J. Phys. Chem., 1978, 82, 784-792. 3. E. Berlin and M. J. Pallansch, J. Phys. Chem., 1968, 72, 1887-1889. 4. G. Jones and D. Dole, J. Am. Chem. Soc., 1929, 51, 295-2964. 5. V. Minkin, O. Osipov and Y. Zhdanov, Dipole Moments in Organic Chemistry. New York, Plenum Press, 197. 6. M. N. Roy, P. Chakraorti and D. Ekka, Mol. Phys., 214, In Press, http://dx.doi.org/1.18/268976. 213.882.

Tales: Tale S1: Experimental values of density(ρ), viscosity (η), refractive index (n D ), surface tension (γ), ph in deferent mass fraction of aqueous α- and β-cyclodextrin mixtures at 298.15 K a ρ 1-3 η Aq. solvent mixture /kg m -3 /mp s aq. α-cd n D γ ph /mn m -1 w 1 =.1.99732 1.3 1.3328 71.62 6.44 w 1 =.3.99792 1.31 1.3331 71.49 6.39 w 1 =.5.99859 1.321 1.3334 71.45 6.32 aq. β-cd w 2 =.1.99747 1.34 1.3329 71.71 6.65 w 2 =.3.99815 1.313 1.3332 71.61 6.1 w 2 =.5.9989 1.323 1.3336 71.57 5.57 a Standard uncertainties u are: u(ρ) =5 1-5 g cm -3, u(η) =.3 mp s, u(n D ) =.2, u(γ) =.3 mn m -1, u(ph) =.1, and u(t) =.1K Tale S2: Experimental values of density (ρ), viscosity (η), refractive index (n D ), and ph of selected amino acids in deferent mass fraction of aqueous α- and β-cyclodextrin mixtures at 298.15 K a molality /mol kg -1 ρ 1-3 /kg m -3 η /mp s Glysine n D molality ph ρ 1-3 η /mol kg -1 /kg m -3 /mp s L-Lysine.1.99766 1.39 - -.1.99773 1.338 1.333 9.76.251.99819 1.316 - -.251.99841 1.363 1.3334 9.81.42.99873 1.322 - -.43.99913 1.384 1.3337 9.89.553.99928 1.327 - -.555.99989 1.43 1.3341 9.94.74.99984 1.332 - -.77 1.68 1.421 1.3345 9.97.855 1.4 1.336 - -.859 1.148 1.437 1.335 9.99.1.99826 1.322 - -.1.99828 1.349 1.3333 9.79.251.99879 1.331 - -.251.99889 1.377 1.3337 9.84 n D ph

.41.99934 1.338 - -.43.99956 1.4 1.334 9.92.552.9999 1.345 - -.554 1.27 1.422 1.3344 9.98.73 1.47 1.35 - -.77 1.11 1.442 1.3347 1.1.855 1.15 1.355 - -.859 1.18 1.46 1.3351 1.5.1.99893 1.337 - -.1.9989 1.362 1.3336 9.82.251.99947 1.348 - -.251.99945 1.393 1.3339 9.89.41 1.3 1.357 - -.42 1.7 1.419 1.3342 9.96.552 1.6 1.364 - -.554 1.74 1.443 1.3345 1.1.73 1.119 1.372 - -.76 1.147 1.466 1.3348 1.7.854 1.179 1.378 - -.859 1.222 1.487 1.3352 1.12 L-Phenylalanine L-Glutamic acid.1.99777 1.347 1.333 6.26.1.99795 1.328 1.333 3.35.251.99847 1.381 1.3335 6.12.251.99898 1.346 1.3334 3.28.43.99919 1.49 1.3339 6.1.42 1.7 1.361 1.3337 3.24.555.99992 1.435 1.3343 5.91.554 1.121 1.375 1.3341 3.23.78 1.66 1.459 1.3347 5.82.76 1.239 1.388 1.3345 3.22.861 1.142 1.482 1.3351 5.74.858 1.362 1.4 1.3349 3.21.1.99831 1.358 1.3333 6.21.1.9985 1.339 1.3334 3.34.251.99894 1.395 1.3337 6.8.251.99946 1.359 1.3337 3.28.43.99961 1.426 1.3341 5.95.42 1.51 1.376 1.334 3.25.555 1.31 1.454 1.3344 5.84.554 1.162 1.392 1.3343 3.23.77 1.13 1.481 1.3348 5.76.75 1.277 1.46 1.3346 3.22.861 1.178 1.56 1.3352 5.7.857 1.398 1.419 1.3349 3.21.1.99891 1.372 1.3337 6.1.1.99912 1.351 1.3336 3.32.251.99947 1.412 1.3341 5.95.251 1.2 1.373 1.3339 3.27.43 1.8 1.447 1.3345 5.83.42 1.12 1.392 1.3342 3.25.555 1.74 1.479 1.3348 5.73.553 1.27 1.49 1.3345 3.23.77 1.146 1.59 1.3351 5.68.75 1.319 1.425 1.3348 3.22.86 1.219 1.538 1.3354 5.64.857 1.438 1.441 1.3351 3.21 Glysine L-Lysine

.1.99781 1.315 - -.1.99786 1.322 1.3331 9.81.251.99834 1.323 - -.251.99851 1.338 1.3334 9.88.42.99889 1.33 - -.43.9992 1.352 1.3338 9.93.553.99944 1.336 - -.555.99992 1.364 1.3342 9.97.74 1.1 1.341 - -.77 1.67 1.375 1.3346 9.99.855 1.58 1.346 - -.859 1.143 1.386 1.335 1.1.1.99849 1.328 - -.1.99848 1.319 1.3334 9.84.251.9992 1.338 - -.251.9996 1.334 1.3337 9.91.41.99957 1.347 - -.42.9997 1.351 1.3341 9.95.552 1.14 1.354 - -.554 1.39 1.368 1.3345 9.99.73 1.72 1.36 - -.76 1.111 1.385 1.3349 1.2.854 1.131 1.367 - -.859 1.186 1.43 1.3353 1.4.1.99924 1.34 - -.1.99918 1.327 1.3339 9.87.251.99978 1.352 - -.251.99969 1.348 1.3342 9.94.41 1.34 1.361 - -.42 1.28 1.372 1.3345 9.99.552 1.92 1.369 - -.554 1.93 1.396 1.3349 1.2.73 1.152 1.376 - -.76 1.163 1.424 1.3352 1.5.854 1.213 1.384 - -.859 1.238 1.453 1.3356 1.8 L-Phenylalanine L-Glutamic acid.1.99788 1.318 1.3326 6.36.1.9988 1.323 1.3332 3.4.251.99854 1.333 1.333 6.18.251.9998 1.339 1.3336 3.32.43.99924 1.345 1.3333 6.2.42 1.16 1.352 1.3339 3.26.555.99996 1.357 1.3335 5.88.554 1.129 1.364 1.3343 3.23.78 1.7 1.368 1.3338 5.76.76 1.248 1.375 1.3346 3.21.861 1.146 1.379 1.3341 5.67.858 1.371 1.386 1.3349 3.2.1.99849 1.321 1.3334 6.1.1.9987 1.325 1.3335 3.32.251.9997 1.339 1.3338 5.9.251.99963 1.343 1.3338 3.25.43.99969 1.358 1.3342 5.82.42 1.64 1.36 1.3341 3.21.555 1.36 1.378 1.3347 5.73.554 1.173 1.376 1.3344 3.2

.77 1.16 1.398 1.3352 5.65.75 1.286 1.393 1.3347 3.18.861 1.178 1.42 1.3357 5.61.857 1.47 1.41 1.335 3.17.1.99916 1.328 1.3338 5.49.1.99939 1.329 1.3338 3.3.251.99965 1.355 1.3342 5.4.251 1.24 1.349 1.3341 3.24.43 1.2 1.384 1.3346 5.31.42 1.119 1.37 1.3344 3.21.555 1.83 1.413 1.335 5.23.553 1.223 1.392 1.3347 3.19.77 1.149 1.443 1.3354 5.15.75 1.337 1.415 1.335 3.18.86 1.222 1.474 1.3359 5.1.857 1.454 1.439 1.3352 3.16 a Standard uncertainties u are: u(ρ) =5 1-5 kg m -3, u(η) =.3 mp s, u(n D ) =.2, u(ph) =.1, and u(t) =.1K w 1 and w 2 are mass fractions of α- and β-cyclodextrin in aqueous mixture respectively Tale S3: Apparent molar volume (ϕ V ), (η r -1)/ m, and molar refraction (R M ) of selected amino acids in different mass fraction of aqueous α- and β-cyclodextrin mixtures at 298.15 K a Aq. solvent mixture ϕ V 1-6 (η r -1)/ m /m 3 mol -1 /kg 1/2 mol -1/2 Glysine R M Aq. solvent /m 3 mol -1 mixture ϕ V 1-6 (η r -1)/ m / m 3 mol -1 /kg 1/2 mol -1/2 L-Lysine R M /m 3 mol -1.1 41.18.69 -.1 15.47.223 3.1369.251 4.38.78 -.251 12.87.243 3.158.42 39.93.84 -.43 11.21.261 3.1763.553 39.54.88 -.555 99.73.274 3.199.74 39.17.93 -.77 98.45.289 3.247.855 38.94.95 -.859 97.51.299 3.2163.1 41.16.92 -.1 11.42.236 3.1522.251 4.35.11 -.251 17.61.26 3.1639.41 39.65.17 -.43 15.41.282 3.171.552 39.15.114 -.554 13.68.298 3.1766.73 38.72.115 -.77 12.26.316 3.1827.855 38.33.117 -.859 1.75.331 3.1871.1 41.13.121 -.1 115.35.242 3.1364

.251 39.93.129 -.251 111.95.277 3.1546.41 39.13.136 -.42 19.34.298 3.1662.552 38.58.139 -.554 17.25.319 3.1757.73 37.98.146 -.76 15.2.339 3.1849.854 37.48.148 -.859 13.63.359 3.1947 L-Phenylalanine L-Glutamic acid.1 12.51.299 34.527.1 84.36.169 3.3277.251 119.51.335 34.763.251 8.95.189 3.334.43 118.76.356 34.922.42 78.59.199 3.339.555 118.23.385 34.16.554 76.61.29 3.3435.78 117.79.399 34.128.76 74.9.22 3.3476.861 117.27.419 34.1322.858 73.21.229 3.358.1 126.45.32 34.659.1 89.32.175 3.341.251 124.65.366 34.846.251 85.71.22 3.3354.43 123.2.392 34.988.42 82.55.217 3.3319.555 121.99.421 34.198.554 8.2.227 3.3287.77 121.1.442 34.129.75 78.1.239 3.3261.861 12.3.463 34.133.857 75.99.245 3.3232.1 133.38.34 34.791.1 94.26.189 3.335.251 13.17.392 34.943.251 9.6.215 3.3424.43 128.12.426 34.164.42 86.5.23 3.3468.555 126.28.456 34.1158.553 83.98.245 3.3512.77 124.37.481 34.1237.75 81.53.259 3.3547.86 123.1.59 34.13.857 79.12.269 3.3588 Glysine L-Lysine.1 41.17.84 -.1 17.46.26 3.127.251 4.37.92 -.251 14.86.285 3.151.42 39.67.99 -.43 13.2.36 3.1694.553 39.35.14 -.555 11.9.322 3.1852.74 38.88.17 -.77 1.73.338 3.22.855 38.58.11 -.859 99.85.348 3.2148.1 41.15.114 -.1 113.4.274 3.1275

.251 4.34.12 -.251 19.99.38 3.1536.41 39.64.129 -.42 17.64.33 3.1713.552 38.96.133 -.554 15.66.353 3.1866.73 38.43.135 -.76 14.9.37 3.215.854 37.96.141 -.859 12.73.382 3.2137.1 41.12.128 -.1 118.32.294 3.1594.251 39.91.138 -.251 114.72.334 3.1765.41 39.11.143 -.42 111.81.362 3.1884.552 38.38.148 -.554 19.4.385 3.1997.73 37.68.151 -.76 17.31.47 3.291.854 37.11.158 -.859 15.36.423 3.2171 L-Phenylalanine L-Glutamic acid.1 124.51.329 34.132.1 86.35.184 3.3372.251 122.7.372 34.265.251 82.94.23 3.3432.43 121.25.41 34.373.42 8.8.218 3.3473.555 12.22.426 34.448.554 77.87.231 3.358.78 119.35.447 34.519.76 75.75.243 3.3537.861 118.55.465 34.588.858 73.91.251 3.3566.1 131.43.342 34.499.1 92.3.198 3.3413.251 128.63.394 34.82.251 88.9.221 3.346.43 126.92.429 34.119.42 85.4.239 3.341.555 125.24.456 34.1215.554 82.19.256 3.3397.77 123.85.481 34.1377.75 79.99.267 3.3394.861 122.71.51 34.1535.857 77.63.276 3.339.1 139.34.37 34.696.1 98.24.211 3.3476.251 135.34.424 34.93.251 93.63.239 3.3495.43 132.84.467 34.116.42 89.98.26 3.359.555 13.24.51 34.1247.553 86.68.276 3.3522.77 128.33.529 34.1381.75 83.36.29 3.3533.86 126.27.554 34.1498.857 8.87.34 3.3541 a Standard uncertainties u are: u(t) =.1K w 1 and w 2 are mass fractions of α- and β-cyclodextrin in aqueous mixture respectively

sol. mix Tale S4: Limiting apparent molar volume (ϕ V ), experimental slope (S V* ), viscosity A- and B-coefficient, and limiting molar refraction (R MO ) of selected amino acids in different mass fraction of aqueous α- and β-cyclodextrin mixtures at 298.15 K a ϕ V /m 3 mol -1 S V * /m3 mol- 3/2 kg 1/2 B /kg 1/2 mol -1/2 S V * A R O M /kg mol -1 /m 3 mol sol. mix ϕ V /m 3 mol- -1 /m 3 mol -1 L-Lysine B /kg 1/2 3/2 kg 1/2 mol -1/2 A R O M /kg mol -1 /m 3 mol -1 19.53-41.41.43.18 3.9 111.23-39.4.462.213 3.8 115.46-49.99.493.184 3.13 118.84-55.45.568.217 3.8 121.56-61.16.599.181 3.1 125.24-67.44.671.227 3.12 L-Phenylalanine 122.15-16.59.619.236 34.1 127.57-3.98.73.259 33.98 129.86-33.35.737.247 34.3 135.89-45.12.822.262 33.99 138.77-53.66.862.254 34.5 146.9-67.14.96.274 34.2 L-Glutamic acid 9.1-57.46.33.139 3.31 93.4-64.91.355.148 3.32 96.49-69.7.359.143 3.34 1.6-75.91.412.157 3.34 12.28-78.44.415.148 3.32 17.79-9.99.482.163 3.34 a Standard uncertainties u are: u(t) =.1K w 1 and w 2 are mass fractions of α- and β-cyclodextrin in aqueous mixture respectively