Cold Magnesium Atoms for an Optical Clock

Similar documents
Atom Quantum Sensors on ground and in space

Towards compact transportable atom-interferometric inertial sensors

Optical Lattice Clock with Neutral Mercury

Development of a compact Yb optical lattice clock

Laser cooling and trapping

Tunneling in optical lattice clocks

Optical Clocks at PTB

Ytterbium quantum gases in Florence

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Laser Cooling of Thulium Atoms

Ultracold atoms and molecules

In-beam measurement of the hydrogen hyperfine splitting: towards antihydrogen spectroscopy. Martin Diermaier LEAP 2016 Kanazawa Japan

Optical Lattice Clock with Spin-1/2 Ytterbium Atoms. Nathan D. Lemke

1. Introduction. 2. New approaches

National Physical Laboratory, UK

CW-Lyman- Source for Laser Cooling of Antihydrogen in a Magnetic Trap

Titelmasterformat durch Klicken bearbeiten

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Transportable optical clocks: Towards gravimetry based on the gravitational redshift

Lecture 1. Physics of light forces and laser cooling

Temperature limits in laser cooling of free atoms with three-level cascade transitions

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Shau-Yu Lan 藍劭宇. University of California, Berkeley Department of Physics

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

NanoKelvin Quantum Engineering

Les Houches 2009: Metastable Helium Atom Laser

Forca-G: A trapped atom interferometer for the measurement of short range forces

(Noise) correlations in optical lattices

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Quantum Computing with neutral atoms and artificial ions

Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Quantum Computation with Neutral Atoms Lectures 14-15

From laser cooling to BEC First experiments of superfluid hydrodynamics

Atomic clocks. Clocks

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Primary Frequency Standards at NIST. S.R. Jefferts NIST Time and Frequency Division

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

Ion trap quantum processor

The Yb lattice clock (and others!) at NIST for space-based applications

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

spectroscopy of cold molecular ions

Two-photon photoionization of the Ca 4s3d 1 D 2 level in an optical dipole trap

Why ultracold molecules?

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Matter wave interferometry beyond classical limits

Optical Clocks. Tanja E. Mehlstäubler. Physikalisch-Technische Bundesanstalt & Center for Quantum Engineering and Space Time Research

arxiv:quant-ph/ v1 16 Mar 2007

Lecture 11, May 11, 2017

Lecture 3. Bose-Einstein condensation Ultracold molecules

A new experimental apparatus for quantum atom optics

Manipulating Single Atoms

THE SPACE OPTICAL CLOCKS PROJECT

Quantum Computation with Neutral Atoms

0.5 atoms improve the clock signal of 10,000 atoms

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

A Calcium Optical Frequency Standard with Ultracold Atoms: Approaching Relative Uncertainty

Sub-Doppler cooling of 40K in three-dimensional gray optical molasses

Laser Cooling and Trapping of Atoms

International Conference on Space Optics ICSO 2006 Noordwijk, Netherlands June 2006

arxiv: v1 [physics.ins-det] 25 May 2017

Laser Spectroscopy of HeH + 施宙聰 2011 AMO TALK 2011/9/26

Quantum Logic Spectroscopy and Precision Measurements

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

RACE: Rubidium Atomic Clock Experiment

Laser cooling of 173 Yb for isotope separation and precision hyperfine spectroscopy

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Laser-cooling and trapping (some history) Theory (neutral atoms) Hansch & Schawlow, 1975

Study on Bose-Einstein Condensation of Positronium

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Stationary 87 Sr optical lattice clock at PTB ( Accuracy, Instability, and Applications)

Confining ultracold atoms on a ring in reduced dimensions

Laser Spectroscopy on Bunched Radioactive Ion Beams

EYLSA laser for atom cooling

Atom interferometry in microgravity: the ICE project

High Accuracy Strontium Ion Optical Clock

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

The Nobel Prize in Physics 2012

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Atomic Physics (Phys 551) Final Exam Solutions

The amazing story of Laser Cooling and Trapping

Positronium: Old Dog, New Tricks

Feedback control of atomic coherent spin states

Coulomb crystal extraction from an ion trap for application to nano-beam source"

Construction of an absolute gravimeter using atom interferometry with cold 87. Rb atoms

arxiv:physics/ v1 [physics.atom-ph] 7 Nov 2006

Investigation of two-color magneto-optical trap with cesium 6S 1/2-6P 3/2-7S 1/2 ladder-type system

arxiv: v2 [physics.atom-ph] 18 Jun 2013

Determining α from Helium Fine Structure

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Quantum Control of the Spin-Orbit Interaction Using the Autler-Townes Effect. Abstract

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Opportunities with collinear laser spectroscopy at DESIR:

Progress on Atom Interferometer (AI) in BUAA

F.G. Major. The Quantum Beat. The Physical Principles of Atomic Clocks. With 230 Illustrations. Springer

Transcription:

Cold Magnesium Atoms for an Optical Clock Tanja Mehlstäubler Jan Friebe Volker Michels Karsten Moldenhauer Nils Rehbein Dr. Hardo Stöhr Dr. Ernst-Maria Rasel Prof. Dr. Wolfgang Ertmer Institute of Quantum Optics University of Hannover Welfengarten 1 D-30159 Hannover Germany

The Mg - Atom Interferometry group in Hannover Jan Friebe Volker Michels Tanja Mehlstäubler Karsten Moldenhauer Nils Rehbein former members: Holger Wolf Dr. Jochen Keupp Dr. Albane Douillet Dr. Hardo Stöhr Dr. Ernst-Maria Rasel Prof. Wolfgang Ertmer

Outline Brief history of frequency standards Ramsey-Bordé interferometery in Mg How to get to µk temperatures? (A) 25 Mg and heating in MOT (B) Quench cooling (C) 2-photon resonances Summary & Outlook

A brief history of frequency standards microwave standards 1950 : Ramsey develops seperated field method Ø atomic beam clocks surpass quarz 1989 : a Mg atomic beam frequency standard Bava et al., Appl. Phys. B, 48, p.495, (1989) 1989 : first fountain (Na): ν = 2 Hz Kasevich et al., PRL, 63, p.612, (1989) optical standards neutral alkaline-earth (like) atoms Æ high S/N 1992 : the Mg Ramsey interferometer Sterr et al., Appl. Phys. B, 54, p.341, (1992) 1999 : narrow line cooling in Sr : ρ ~ 10-2 in MOT Katori et al., PRL, 82, p.1116, (1999) 2001 : quench cooling in Ca: T MOT ~ 6 µk Binnewies et al., PRL, 87, 123002, (2001) Curtis et al., Phys. Rev. A, 64, 031403, (2001) 2003 : Yb BEC via narrow line cooling! Takasu et al., PRL, 91, 040404, (2003) δν/ν 0 = 7µ10-16 σ y = 1.6µ10-14 in 1s (Cs/Rb fountains) frequency σ ν 0 2 1 y ( τ ) = frequency δν/ν 0 = 1.2µ10-14 (Ca) σ y = 7µ10-15 in 1s (Ca/Hg + comparison) ν 0 π Q Stability S N time τ T Accuracy δν/ν 0 time 1/ 2, Q = ν ν

The magnesium atom 24 Mg 457 nm clock transition atomic quality factor Q=2â10 13 potential for T < µk (1) 285 nm cooling transition strong light forces high T D ~ 2 mk MOT 285 nm 80 MHz J=0 1 S 0 1 P 1 1 D 2 3 S 1 3 P 012 3 D 123 4 MHz 881 nm Singlet 462 nm 457 nm, 31Hz - Interferometry Triplet 1 2 0 (1) H. Wallis and W. Ertmer, J.Opt.Soc.Am. B 6, 2211 (1989)

Ramsey-Bordé Interferometry Doppler free Ramsey spectroscopy Ch. Bordé, C.R. Acad. Sci. Ser. B, 284, p.101 (1977) 1 P 1 285 nm MOT 24 Mg 457 nm 31 Hz 1 S 0 3 P 1 laser beam/puls π/2 16 cm gú T D T D eú ULE- resonator intermediate mass spring mountis Eddie current damping P ex cos(2t D ( +δ rec )) 140 mw at 457 nm with dye laser stabilized to high finess cavities 12,5 cm

Ramsey-Bordé Interferometry 1240000 1220000 290 Hz resolution decay of signal count rate [s -1 ] 1200000 1180000 1160000 1140000 1120000 1100000 N = (8700±1000)s -1 S = 16000 Q = 2.26 10 12 σ y (τ= 1s) = 7.64 10-14 T = 860,8 µs r60b 39600 40000 40400 40800 41200 detuning [Hz] 21.05.02 resolution 280 Hz potential stability σ y = 8 x10-14 laser line width υ Laser (170 15) Hz T MOT = 3.8 mk ï atomic motion limits stability ï only 8 % of atoms are excited (τ Pulse = 4 µs)

Temperatures in MOT new set up to study cooling techniques optical access for UV, quenching, interferometry, dipole trapping up to10 8 atoms Mg beam MOT coils (grad B = 130 Gauss/cm) slowing beam Temperature [mk] 8 7 6 5 4 3 2 change of oven temperature misaligned MOT change of laser intensity Mg25 0 2 4 6 8 10 12 14 16 18 20 N 1/3 n 2/3 [10 8 /cm 2 ] Temperature [mk] 16 14 12 10 8 6 4 2 0,0 0,2 0,4 0,6 0,8 1,0 1,2 S total Doppler limit 24 Mg 25 Mg

Sub-Doppler forces in 25 Mg Sub-Doppler cooling of 25 Mg? (Coop. J.Dunn, J.Ye, NIST) 87 Sr Ω/Γ=1 [hkγ] 25 Mg F=3/2 F=5/2 F=7/2 =19 MHz =27 MHz [Γ/k] [Γ/k] F=5/2 γ=80 MHz I sat =450 mw/cm 2 > 10 5 atoms in MOT 25 Mg Ω/Γ=0.25 B=16 MHz γ] γ] [hkγ] γ] [hkγ] Hyperfine Quenching of clock transition 1 S 0 3 P 0 : 90 µhz 0.44 mhz (Porsev u. Derevianko, physics/0312006, Dez.2003) B=0 MHz [Γ/k] [Γ/k]

Sub-Doppler forces in 25 Mg Sub-Doppler cooling of 25 Mg? (Coop. J.Dunn, J.Ye, NIST) 87 Sr Ω/Γ=1 [hkγ] 25 Mg F=3/2 F=5/2 F=7/2 =19 MHz =27 MHz [Γ/k] [Γ/k] F=5/2 γ=80 MHz I sat =450 mw/cm 2 > 10 5 atoms in MOT 87 Sr 25 Mg (s = 2) v c ~ 0.07 m/s v c ~ 0.22 m/s (s=0.13) v c ~ 0.02 m/s v rec = 0.01 m/s v rec = 0.06 m/s Hyperfine Quenching of clock transition 1 S 0 3 P 0 : 90 µhz 0.44 mhz (Porsev u. Derevianko, physics/0312006, Dez.2003) in MOT: v rms = 0.4 m/s v rms = 1.1 m/s

Quench cooling in 24 Mg 4 1 S 0 γ = 4 MHz quench laser 462 nm MOT 285 nm 80 MHz 3 1 S 0 1 P 1 Clock transition 457 nm 31Hz 3 P 1 cooling on narrow lines 3 1 S 0 3 3 P 1 : T rec = 3.8 µk >> T Dopp mg<f light γ min ~90 Hz quench transition 3 3 P 1 4 1 S 0 200 mw @ 462 nm with Ti:Sapph doubled with PPKTP 24 Mg Γ 3 4 1 3 Ω 23, Γ 2 31Hz 2 Ω 12, Γ 1 }γ eff T.E. Mehlstäubler et al., J.O.B 5, p.183 (2003) ρ 22Γeff = ρ22γ1 + ρ33γ3 for s 3 <<1: Γ eff = Γ 1 Ω + Γ 2 23 3 ρ 33 = ρ 22 Ω Γ Γ Γ 2 3 2 23 2 3 ILaser

Search for the quenching transition retro reflector detection (PMT) Mg oven T ~ 410 C Mg beam interaction zones l/2 462 nm excitation 4 1 S 0 l/2 3 3 P 1 457 nm 3 1 S 0

Quench cooling in 24 Mg Kuruzc: Γ 2 = 3.21 10³ s -1 new ab initio calculations: Pal chikov, Derevianko, Fischer (3) Γ 2 = 2.0 x 10 2 s -1 our measurement: Γ 2 ~ 1 x 10 2 s -1 Transfer Efficiency [%] 60 60 50 50 40 30 20 10 0 (larger (larger power power @@ 457nm) 457nm) 0 5200 10400 15 60020 80025 1000 30 P Quench [mw] per beam σ + σ - J=0 J=0 462nm σ - J=1 σ + 457nm theo. transfer efficiency ~ 1% x 10 4 atoms expected @ T=10µK 8% of 10 5 atoms, 70% of x 10 4 atoms lower duty cycle of interferometry (3) private communications, to be published

2-Photon resonances in 24 Mg 3 1 D 2 2.2 MHz 881 nm exact solution of the Bloch equations for a 3 level system ρ 3 (IR) loss 3 P 1,2 3 1 P 1 3 1 S 0 80 MHz UV-MOT ρ 2 (UV) 2-photon process more efficient than 1 photon? W.C. Magno et al., Phys. Rev. A 67, 043407 (2003)

2-Photon resonances in 24 Mg 3 1 D 2 loss 3 P 1,2 3 1 P 1 2.2 MHz 881 nm 80 MHz UV-MOT UV counts e6/s 8 7 6 5 4 3 Resonance in MOT 80 MHz P IR = 1.3 mw σ = 16 MHz 3 1 S 0 2 1 P IR = 44 mw σ = 26 MHz -70-60 -50-40 -30-20 -10 0 10 20 30 40 50 detuning of 881 nm laser [MHz] 2-photon process more efficient than 1 photon? W.C. Magno et al., Phys. Rev. A 67, 043407 (2003)

2-Photon resonances in 24Mg resonances in 1D molasses

2-Photon resonances in 24Mg resonances in 1D molasses

2-Photon resonances in 24 Mg 24 Mg Temperature across 2-photon resonance 14 26 mk 21 mk scan7b 25 12 20 T [mk] 10 8 6 4 T [mk] 15 10 5 2 60 80 100 120 140 ν (IR) in MHz 0 30 45 60 75 90 105 120 ν (IR) in MHz

2-Photon resonances in 24 Mg Populations in excited states ρ 33 UV IR UV fi force at UV transition: 40000 20000 ρ 22 UV -3-4 -4-6 -2-2 -3-2 -2-2 -4-2 -2-2 -1-1 -1-2 -1 1 2 1 1 2 2 4 2 2 2 6 43 43 ρ 22-20000 -40000 v[m/s] positive feedback on faster atoms (bunching) higher friction for low velocities

2-Photon resonances in 24 Mg force at UV transition fi dv = a(v) dt 20000 25000 20000 20000 30000 30000 20000 15000 15000 20000 20000 15000 20000 10000 10000 10000 10000 5000 5000 10000 5000-3 -2-1 5000 1 2 3-3-4-4-2-2 -2-2-1 1 2 1 2 4 23-2 1-2 -2-3 -2-1 -1-10000 1-1 -2-1 -5000 1 1 2 1 2 2-10000 2-5000 -5000-20000 -10000-5000 0.03 0.03 0.03 0.025 0.025 0.025 0.02 0.02 0.02 0.015 0.015 0.015 0.01 0.01 0.01 0.005 0.005 0.005-0.002-0.001-0.001 0.001 0.002 0.002 0.003 0.003 0.004 e.g. for balanced molasses 20000 10000-4 -2 2 4-10000 -20000 0.03 0.025 0.02 0.015 0.01 0.005-0.004-0.002 0.002 integrating eqs. of motion TOF after 100µs molasses T < 100 µk?

Summary & Outlook Mg interferometry limited by temperature of atoms Sub-Doppler cooling forces in 25 Mg are not sufficient Quenching transition @ 462 nm measured Ø load 1% of atoms into QMOT at 9 µk? 2-photon resonances observed Ø Sub-Doppler temperatures possible in 3D-molasses? Ø Channel to populate meta-stable states! Combination with dipole trap?

Summary & Outlook w 0 = 20 µm Τ trap 0.3 mk U dip [MHz] ac-stark-shift Γ Raleigh 0.1 Hz 100 75 50 25 1 S 0 m = 0 π 3 P 1 m = 0 σ +/ m = +1 / -1 σ /+ m = -1 / +1 σ +/ 400 600 800 1000 λ trap [nm] - Yb:YAG 25 W @ 1030 nm - quench cooling into dipole trap - study of collisions -25-50 -75 - trap potentials only identical at crossing Æ λ = 446 nm -100

The thin disc laser Nd:YVO 4 crystal parabolic pump mirror heat sink pump fiber etalons output coupler 700 mw @ 914 nm 40 W @ 808 nm Laser active medium : thin disk (~320 µm) multiple pump light passes through the laser active medium single frequency with 2 etalons : d = 0,6 mm und 4 mm

Frequency doubling 400 mw @ 914 nm w 2 Det. λ / 4 PPKTP crystal 160 mw @ 457 nm w 1 Cavity: Hänsch-Couillaud lock w 1 ~49 µm w 2 ~147µm cavity length = 34 cm incoupling efficiency: 85 % conversion efficieny: 47 %