Plasma Instabilities: Review

Similar documents
The Strange Physics of Nonabelian Plasmas

Longitudinal thermalization via the chromo-weibel instability

arxiv: v1 [nucl-th] 7 Jan 2019

Universality classes far from equilibrium of scalar and gauge theories

Instabilities Driven Equilibration in Nuclear Collisions

Classical YM Dynamics and Turbulence Diffusion

Instabilities in the Quark-Gluon Plasma

Instability in an expanding non-abelian system

Preheating in the Higgs as Inflaton Model

Plasma Processes. m v = ee. (2)

It s a wave. It s a particle It s an electron It s a photon. It s light!

Isotropization from Color Field Condensate in heavy ion collisions

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

P- and CP-odd effects in hot quark matter

Let s consider nonrelativistic electrons. A given electron follows Newton s law. m v = ee. (2)

QCD at finite Temperature

The early stages of Heavy Ion Collisions

Instabilities Driven Equilibration of the Quark-Gluon Plasma

Nonequilibrium quantum field theory and the lattice. Jürgen Berges Darmstadt University of Technology

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab

Far-from-equilibrium universality classes In heavy-ion collisions and cosmology

Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice

Conceptual Understandings for K-2 Teachers

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

Quark-Gluon LHC

Nonequilibrium photon production by classical color fields

Cosmology & CMB. Set2: Linear Perturbation Theory. Davide Maino

Physics 11b Lecture #24. Quantum Mechanics

Physics 598ACC Accelerators: Theory and Applications

5 Infrared Divergences

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics

Strong Interaction Effects. of Strong Magnetic Fields. CPODD Workshop 2012 RIKEN BNL, June Berndt Mueller. Wednesday, June 27, 12

Photon production in the bottom-up thermalization of heavy-ion collisions

Turbulence and Bose-Einstein condensation Far from Equilibrium

Chiral magnetic effect and anomalous transport from real-time lattice simulations

Transmission Lines and E. M. Waves Prof. R. K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment

Jet Quenching and Holographic Thermalization

Chiral Magnetic Effect

8.333: Statistical Mechanics I Fall 2007 Test 2 Review Problems

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

Introduction to Perturbative QCD

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

GRAVITATIONAL COLLISIONS AND THE QUARK-GLUON PLASMA

The Ginzburg-Landau Theory

Lecture 11. Linear Momentum and Impulse. Collisions.


Rutherford s Gold Foil Experiment. Quantum Theory Max Planck (1910)

The glass transition as a spin glass problem

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

arxiv:hep-ph/ v1 29 May 2000

arxiv:nucl-th/ v1 11 Feb 2007

AP Physics C - E & M

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco

Yoctosecond light flashes from the quark gluon plasma

QCD Equation of state in perturbation theory (and beyond... )

Chemical composition of the decaying glasma

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Atomic Structure, Periodic Table, and Other Effects: Chapter 8 of Rex and T. Modern Physics

Partonic transport simulations of jet quenching

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions.

Collisions in One Dimension

Cover Page. The handle holds various files of this Leiden University dissertation

Anisotropic gluon distributions of a nucleus

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

Welcome back to Physics 211

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision.

Nuclear Physics Fundamental and Application Prof. H. C. Verma Department of Physics Indian Institute of Technology, Kanpur

Low Emittance Machines

The Photoelectric Effect

PHY492: Nuclear & Particle Physics. Lecture 24. Exam 2 Particle Detectors

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1)

Chapter 5. Magnetostatics

Polyakov Loop in a Magnetic Field

Outside the solenoid, the field lines are spread apart, and at any given distance from the axis, the field is weak.

Plasma Physics Prof. Vijayshri School of Sciences, IGNOU. Lecture No. # 38 Diffusion in Plasmas

Chapter 6. Maxwell s Equations, Macroscopic Electromagnetism, Conservation Laws

Turbulence and Transport The Secrets of Magnetic Confinement

BOHR S THEORY AND PHYSICS OF ATOM CHAPTER

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras

Plasma collisions and conductivity

xkcd.com It IS about physics. It ALL is.

The Quantum Hall Effect

Fundamentals of Plasma Physics

Lecture 2 2D Electrons in Excited Landau Levels

Chapter 19. Magnetism

Plasma Physics Prof. V. K. Tripathi Department of Physics Indian Institute of Technology, Delhi

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Chapter 6. Quantum Theory of the Hydrogen Atom

MHS. Physics. Sample Questions. Exam to go from grade 10 to grade 11

Linear and non-linear evolution of the gyroresonance instability in Cosmic Rays

The Physics of Collisionless Accretion Flows. Eliot Quataert (UC Berkeley)

Chapter 9. Linear Momentum and Collisions This chapter is about interaction between TWO objects

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

3. What type of force is the woman applying to cart in the illustration below?

Transcription:

Plasma Instabilities: Review Guy Moore, McGill University And Arnold, Yaffe, Mrówczyński, Romatschke, Strickland, Rebhan, Lenaghan, Dumitru, Nara, Bödeker, Rummukainen, Berges, Venugopalan, Ipp, Schenke, Manuel usw Instabilities: general (Abelian) picture Requirements for instabilities to make sense Growth rate, dependence on anisotropy How big do they grow? What do they do? Universität Heidelberg, 12 Dez. 2011: Seite 1 aus 24

Suppose two streams of plasma collide: becomes What happens? Universität Heidelberg, 12 Dez. 2011: Seite 2 aus 24

Magnetic field growth! Consider the effects of a seed magnetic field ˆB ˆp = 0 and ˆk ˆp = 0 How do the particles deflect? Universität Heidelberg, 12 Dez. 2011: Seite 3 aus 24

Positive charges: No net ρ. Net current is induced as indicated. Universität Heidelberg, 12 Dez. 2011: Seite 4 aus 24

Negative charges: same-sign current contribution Induced B adds to seed B. Exponential Weibel instability Linearized analysis: B grows until bending angles become large. Universität Heidelberg, 12 Dez. 2011: Seite 5 aus 24

Note: particles in other directions are stabilizing Sum of J from two signs weakens seed magnetic field. Isotropy: effects from different directions cancel! Universität Heidelberg, 12 Dez. 2011: Seite 6 aus 24

What is B field growth rate? Force, velocity, deflection: F = eb ; v = tf p = ebt p ; v t y = 2 = eb 2p t2. concentration of charges: y/λ B or k y k the B-wavevector J en chg k y e 2 Bt 2 k d 3 p (2π) 3 2p f(p) Define the combination e 2 d 3 p f(p) (2π) 3 m2 Screening p mass squared Universität Heidelberg, 12 Dez. 2011: Seite 7 aus 24

From last slide: J (kb)m 2 t 2. Current must compete with field terms in Ampere s law: D B D t E = J For current to really matter, need J D B kb. This occurs when m 2 t 2 1 or t 1/m. Hence growth rate estimate: B B 0 e γt, γ m. Picture is self-consistent IF particles stay in same-sign B field for time scales tγ > 1. Universität Heidelberg, 12 Dez. 2011: Seite 8 aus 24

Assumptions I Built In in Proceeding Abelian fields? NO! Nonabelian works too! But: Classical field approximation: need α 1 I use e 2, g 2, α interchangeably Classical particle treatment: λ p,debroglie k 1 B or p m,k inst. Allows HL approx. Must be true in each direction! Former: concepts make no sense at strong coupling (I think) Latter: constraints on occupancies and level of anisotropy of excitations giving rise to instability Universität Heidelberg, 12 Dez. 2011: Seite 9 aus 24

Dependence on Occupancy and Anisotropy if typical momentum p Q, m 2 αq 2 f (f typical occupancy): Higher Occupancy: Larger m 2 (red), k inst (black) Universität Heidelberg, 12 Dez. 2011: Seite 10 aus 24

Dependence on Occupancy and Anisotropy For high anisotropy, m 2 goes down, k inst goes up! Smaller m 2 : less filled phase space, fewer part. Larger k inst : next! Universität Heidelberg, 12 Dez. 2011: Seite 11 aus 24

High anisotropy and larger k inst Modes unstable whenever particles stay in same-sign B for t > 1/m. Narrow momentum distrib: time can be longer! angle δ Dist. δ/m Distance 1/m Time scale t δ/k not 1/k. So k m/δ OK! Universität Heidelberg, 12 Dez. 2011: Seite 12 aus 24

High anisotropy m 2 e 2 d 3 p p f(p) δαq2 f (less phase-space) But k inst m/δ δ 1 2 larger. Treatment inconsistent if k inst m/δ > δq p z z = 1 / p z x = 1/p x Wave packet does not fit! Alternate analysis in this regime: k inst mq: more than δq, less than m/δ. Wave Packet Universität Heidelberg, 12 Dez. 2011: Seite 13 aus 24

Weak anisotropy What if almost-isotropic, with a few (O(ǫ)) extras? = Isotropic part has no influence on what k s unstable! Repeat treatment using ǫm 2 in place of m 2. k inst ǫ 1 2m. But γ ǫ 3 2m. Universität Heidelberg, 12 Dez. 2011: Seite 14 aus 24

What limits B-field growth? Many things can do the job: Large angle change: y < 1/k or B < δmp/g Robust Nielsen-Olesen instability: B < k 2 /g m 2 /(δ 2 g) Robust Nonabelian Nonlinear Interactions: B < k k z /g m 2 /(δg) initial conditions? Whichever works at smallest B-value is relevant. Universität Heidelberg, 12 Dez. 2011: Seite 15 aus 24

Large angle change Current stops building when particles bend too much. y > 1/k p > δp, B > δmp/g Universität Heidelberg, 12 Dez. 2011: Seite 16 aus 24

Nielsen-Olesen Instability Uniform B field: circular orbits, quantized p : ( to B that is) p 2 = (1 2n)eB. Energies of allowed excitations FOR SPIN-1: E 2 = p 2 p 2 z 2e s B = p 2 z (2n 1 ± 2)eB One mode has negative E 2 ; exp growth, γ N-O gb Uniform B approx is OK if p 2 increments 2eB > k 2 inst. So k inst < eb to avoid instability Universität Heidelberg, 12 Dez. 2011: Seite 17 aus 24

Nonabelian Nonlinearities Suppose modes grow with many colors and k s. One color acts to rotate J s due to another color: No Blue Current No Blue Current Universität Heidelberg, 12 Dez. 2011: Seite 18 aus 24

Requirement this happens: A in covariant deriv, A m/g or B m 2 /(gδ). Gauge-invariant version: 1/k 1/m Color randomization when Wilson loop shown has O(1) phase. Universität Heidelberg, 12 Dez. 2011: Seite 19 aus 24

What do plasma instabilities do? Main thing: angle-change. θ 1 for self-consistency (we saw) Many small independent kicks : describe with ˆq ˆq dp2 dt ( p)2 t coh = F 2 t coh αb 2 t coh Now B m 2 /gδ, t coh 1/m ˆq m3 δ 2 Thermal-like, O(1) anisotropic: g 3 T 3 (elastic: g 4 T 3 ) Enhanced by 1/δ 2 when large anisotropy. Universität Heidelberg, 12 Dez. 2011: Seite 20 aus 24

Where are plasma instabilities important? Assume ONE typical momentum scale, eg, Q s Anisotropy δ = α d Occupancy f = α c Occupancy-anisotropy plane. f α c Θ(p Q s )Θ( p z α d Q s ) Universität Heidelberg, 12 Dez. 2011: Seite 21 aus 24

slope 9/23 Where are plasma instabilities important? Consider feedback of instab. on hard modes, radiation, merging: Kukela Moore I Anisotropy d=ln( δ)/ln( α) Plasma Instabilities slope 1 Soft Particle Bath Forms c=1/3 d=1/7 d=1/3 d=ln( ε )/ln( α) Scattering c=1 Occupancy c=ln(f)/ln( α) Nielsen Olesen Instabilities Universität Heidelberg, 12 Dez. 2011: Seite 22 aus 24

Application: Heavy Ions Kurkela Moore II Anisotropy d=ln( δ)/ln( α) slope 9/23 Plasma Instabilities slope 1 Attractor 1 Initial Condition Soft Particle Bath Forms c=1/3 d=1/7 d=1/3 Attractor 2 d=ln( ε )/ln( α) Scattering c=1 Occupancy c=ln(f)/ln( α) 8: Nielsen Olesen Instabilities Thermal bath dominates: t α 12 5 s equilibration: t α 5 2 s Q 1 s. Q 1 s Universität Heidelberg, 12 Dez. 2011: Seite 23 aus 24

Conclusions Plasma instabilities generic in anisotropic, α 1 plasmas Especially important in situations of high anisotropy More phenomena can limit growth in a nonabelian than in an abelian context Should play a pivotal role in the equilibration process in heavy ion collisions (in the toy case of α s 1) To make quantitative predictions we need to understand the weak anisotropy case. Universität Heidelberg, 12 Dez. 2011: Seite 24 aus 24