Recent Advances in the Low-Field NMR Characterization of Polymeric Soft Materials Kay Saalwächter

Similar documents
Artifacts in Transverse Proton NMR Relaxation Studies of Elastomers. M(t) ) A exp{-t/t. B exp{-t/t 2B } + C exp{-t/t 2C } (1) qm 2 ) 9 (2)

NMR Studies of Polyethylene: Towards the Organization of Semi Crystalline Polymers

Structure, dynamics and heterogeneity: solid-state NMR of polymers. Jeremy Titman, School of Chemistry, University of Nottingham

3 Proton NMR on Cross-linked Polymers

Structure of Poly(vinyl alcohol) Cryo-Hydrogels as Studied by Proton Low-Field NMR Spectroscopy

Chain Mobility in Crosslinked EPDM Rubbers. Comparison of 1 H NMR T 2 Relaxometry and Double-Quantum 1 H NMR

Polymer Dynamics in PEG-Silica Nanocomposites: Effects of Polymer Molecular Weight, Temperature and Solvent Dilution

Multiple-quantum NMR studies of polymer chain dynamics

Chain Order and Cross-Link Density of Elastomers As Investigated by Proton Multiple-Quantum NMR

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Swelling Heterogeneities in End-Linked Model Networks: A Combined Proton Multiple-Quantum NMR and Computer Simulation Study

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

Author's personal copy

In situ Experiments in Material Science:

VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks]

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Quantification of Dynamics in the Solid-State

QENS in the Energy Domain: Backscattering and Time-of

Entanglements. M < M e. M > M e. Rouse. Zero-shear viscosity vs. M (note change of slope) Edwards degennes Doi. Berry + Fox, slope 3.4.

Protein dynamics from NMR Relaxation data

Supporting Information for. Dynamics of Architecturally Engineered All- Polymer Nanocomposites

Trans-States-Repulsion Scenario of polymer crystallization

Author's personal copy

NMR: Formalism & Techniques

ENAS 606 : Polymer Physics

Polymer Dynamics. Tom McLeish. (see Adv. Phys., 51, , (2002)) Durham University, UK

PROTEIN NMR SPECTROSCOPY

Dependence of Order and Dynamics in Polymers and Elastomers under Deformation Revealed by NMR Techniques

Table 1 Types of solvents with spherical and linear molecules absorbed in EPDM and the mass uptake Q w. EPDM rubber with various solvents (60 phr)

Investigation of Structure and Dynamics in Polymeric Systems via Solid State NMR

An Introduction to Polymer Physics

LOW-FIELD NMR STUDIES OF STRUCTURE AND DYNAMICS IN SEMICRYSTALLINE POLYMERS

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory

Chapter 7. Entanglements

CHAPTER 8. MOLAR MASS DEPENDENT GROWTH OF POLY(ε- CAPROLACTONE) CRYSTALS IN LANGMUIR FILMS

Polymer Dynamics and Rheology

Uncertainties in the Determination of Cross-Link Density by Equilibrium Swelling Experiments in Natural Rubber

Multi-scale studies of elastomer materials (in a tire tread) TERATEC 2013 Materials Science Session B. Schnell

Supporting Information for

Classical Description of NMR Parameters: The Bloch Equations

Lecture 5: Macromolecules, polymers and DNA

1 General Introduction

Introduction to Relaxation Theory James Keeler

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

An introduction to Solid State NMR and its Interactions

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Timescales of Protein Dynamics

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Measuring Spin-Lattice Relaxation Time

Timescales of Protein Dynamics

Notes. Prediction of the Linear Viscoelastic Shear Modulus of an Entangled Polybutadiene Melt from Simulation and Theory (1) 3π 2 k B T D(T)N (2)

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

CHARACTERIZATION OF INTERACTION BETWEEN OIL/BRINE/ROCK UNDER DIFFERENT ION CONDITIONS BY LOW FIELD SOLID-STATE NMR

Filled elastomer mechanics and polymer dynamics modification near surfaces

Relaxation. Ravinder Reddy

Optimizing Phases of CPMG Pulse Sequence and Applying Exact Solution to Measure Relaxation Time

TOPIC 7. Polymeric materials

Spin Track TD-NMR Spectrometer. Applications and Instrumentation Review

Physical Chemistry of Polymers (4)

Supplementary Figures:

ALGORITHM OF ANALYSE OF SPIN-SPIN RELAXATION IN POLYBUTADIENE-C 6 H 12 AND POLYBUTADIENE-C 6 D 12 SOLUTIONS

NMR Spectroscopy of Polymers

Classical Description of NMR Parameters: The Bloch Equations

Investigation of Molecular Structure of the Cortex of Wool Fibers

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

Principles of Nuclear Magnetic Resonance Microscopy

Biophysical Chemistry: NMR Spectroscopy

Protein Dynamics Relaxation techniques

Glass Transition as the Rheological Inverse of Gelation

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

Guideline for Rheological Measurements

NUCLEAR MAGNETIC RESONANCE. Introduction. Vol. 10 NUCLEAR MAGNETIC RESONANCE 637

Long-lived spin echoes in magnetically diluted system: an NMR study of the Ge single crystals Alexander M. Panich,

Ion Transport in Dynamic Polymer Networks based on Metal-Ligand Coordination: Effect of Crosslinker Concentration Supporting Information

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Supporting Information. Controlled Structure Evolution of Graphene Networks in Polymer Composites

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt)

Polymer Gels. Boulder Lectures in Soft Matter Physics July 2012 Yitzhak Rabin

Suspended Long-Lived NMR Echo in Solids

Polymer Physics MSE 458 / CHEM 482 Spring 2018

Magnetic Resonance in magnetic materials

New Developments in Rheology for Reactive Processing

Spectroscopy of Polymers

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

The Physical Basis of the NMR Experiment

Uses of Nuclear Magnetic Resonance (NMR) in Metal Hydrides and Deuterides. Mark S. Conradi

VISCOELASTIC PROPERTIES OF POLYMERS

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

Dynamics of Poly(vinyl butyral) studied by Dielectric Spectroscopy and

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange

BME I5000: Biomedical Imaging

H NMR Studies of Molecular Dynamics. Basis Seminar on June 25th by Cornelius Friedrichs

Biophysical Chemistry: NMR Spectroscopy

MONTE CARLO DYNAMICS OF DIAMOND-LATTICE MULTICHAIN SYSTEMS

Molecular Dynamics in geometrical confinement F. Kremer

Transcription:

Recent Advances in the Low-Field NMR Characterization of Polymeric Soft Materials Kay Saalwächter Low-resolution proton time-domain NMR Basic experiments and industrial applications - Chemometrics - NMR cryoporometry Advanced experiments Examples: - polymer crystallization - domain sizes in block copolymers - structure and dynamics of elastomers - gelation Conclusions

Time-domain NMR typical FID of a liquid or a rubber: T 2 * 0.5 1 ms (1/πT 2 * 0.5 khz) shim- (B 0 homogeneity-) limited! compare: σ = 5 ppm 20 MHz 5 ppm = 100 Hz! most important aspect: initial FID intensity = integrated signal! FT

Mobility contrast reflected in the FID frequency domain rigid organic solid (crystalline, below T g ) ~ 20 khz liquid, oil, polymer melt, elastomer ~10-1000 Hz time domain ~ 10 µs ~ 500 µs (shim!) e.g. semicrystalline polymer, block copolymer Σ two-component decay food industry applications: solid fat content (SFC) in greases water content in bread

Manipulation by pulse sequences B 0 T 1 process B 0 90 pulse apparent rd FID T 2 process (B (recycle delay) 0 inhom.) more sophisticated experiments: rd some pulse (sequence) some other pulse (sequence) FID fast (MHz) dynamics: measure T 1 inversion recovery rd 180 pulse τ I = f(τ) slow (khz) dynamics: measure real T 2 Hahn echo (alt.: CPMG, multiple echoes) rd now also: more reliable separation of multiple mobile components! τ amplitude 180 pulse I = f(τ) τ fast decay intermediate decay slow decay time τ N

Other industrial applications Pharmaceutical Ind. Petroleum Industry Medical Research e.g. moisture in powders (free & bound) Consumer Products e.g. total hydrogen content of distillates e.g. live mice analyzer Polymer Applications e.g. fluoride in toothpaste

Chemometrics e.g., water, oil, and protein contents in seeds via T 1 or T 2 (inv.rec. or CPMG) amplitude fast decay intermediate decay slow decay multi-exponential fitting can be ambiguous! time idea: find sub-curves by linear-algebra techiques (principal-component analysis, PCA): K fixed time points N reference samples (known contents), a n data vectors to model an unknown a, T can often be a 2xK matrix, 2 principal components (PC1,2) and subcurves (p 1,2 ) are sufficient! eigenvectors (subcurves) n N p 1 p 2 k K A P PC1 0 0 PC2 0 0 T residuals, noise E

Applications of chemometrics oil seed treatment: water content of fish: T 1 H.T. Pedersen, L. Munck, S.B. Engelsen, J. Am. Oil Chem. Soc.. 77 (2000), 1069-1077 T 2 S.M. Jepsen, H.T. Pedersen, S.B. Engelsen, J. Sci.. Food Agric.. 79 (1999), 1793-1802

NMR cryoporometry Gibbs-Thompson: melting point depression of a finite-sized crystal: d 1 simple experiment: π/2 π d 2 rd τ τ remaining liquid (water) signal = f(t) reconstruct pore size distribution! NMR gas sorption (BET) J.H. Strange, M. Rahman, E.G. Smith, Phys. Rev. Lett.. 71 (1993), 3589-3591

NMR cryoporometry decomposition of pore-size mixtures: J.H. Strange, M. Rahman, E.G. Smith, Phys. Rev. Lett.. 71 (1993), 3589-3591

Advanced experiments polymer crystallinity and amorphous-phase mobility: measure dipolar-refocused FID and T 2 MSE-CPMG rd MSE FID τ τ τ I = f(nτ) domain sizes: measure spin diffusion improveddipolarfilter sequence rd selection spin diffusion τ diff MSE I mobile = f(τ diff ) network structure and dynamics: measure weak dipolar rd couplings MQ experiment I = f(τ DQ excitation DQ reconversion ) DQ τ DQ τ DQ

1 H NMR detection of polymer crystallization an old quantification problem dead time! f τ d c f a traditional partial solution solid echo x τ se ± y t=0 t=0 advanced solution mixed magic τ CPMG φ sandwich 1 echo φ 4 τ' 2τ 2τ τ τ initial φ 4 τ CPMG φ 4 t=0 N /2 φ 2 φ 3 φ 3 φ 3 φ 3 -φ 3 -φ 3 -φ 3 -φ 3 φ 2 τ' τ φ 2 τ φ τ φ 2 τ φ 2 τ φ 2 τ φ 2 τ φ τ φ 2 τ φ τ φ τ n MSE n MSE A. Maus. C. Hertlein, KS, Macromol. Chem. Phys. 207 (2006), 1150

Isothermal crystallization kinetics on the minispec poly(ε-caprolactone) at 40 C φ c dead time! magic echo improved method: signal / a.u. φ a t=0 N 90 80 70 60 50 40 30 20 10 FID-CPMG 2½ h 0 0.00 0.01 0.02 0.03 5 10 15 20 delay / ms signal / a.u. 90 80 70 60 50 40 30 20 10 t=0 N crystallinity MSE-CPMG amorphous phase mobility 0 0.00 0.01 0.02 0.03 5 10 15 20 delay / ms A. Maus. C. Hertlein, KS, Macromol. Chem. Phys. 207 (2006), 1150

Polymer crystallization: the problem

Polymer crystallization: spherulitic lamellar growth µm-mm scale: spherulites sub-µm scale: lamellae

Polymer crystallization: possible scenarios reeling-in, adjacent re-entry solidification model, fringed micelles, no large-scale diffusion new ideas: Olmsted et al. 1998: spinodal-like process? Strobl 2000: mesomorphic pre-phase?

Field (in)dependence and morphology effect spp crystallized at differect T c 1.0 0.8 f c = 21.6% f c = 24.5% 20 MHz norm. intensity 0.6 0.4 f m = 64% f m = 61% T 50% 0.43 ms 0.2 T 50% 0.28 ms 500 MHz norm. intensity 0.0 1.0 0.8 0.6 0.4 0.2 0.02 0.04 0.06 0.08 1 10 time / ms f c = 20.6% f c = 23.4% f m = 64% f m = 63% T 50% 0.30 ms } 100 µs 200 µs T c = 388 K 400 µs 100 µs 200 µs } T c = 368 K 400 µs T 50% 0.54 ms clear influence of morphology! lower T c faster cryst., solidificationtype more confined chains, faster relaxation 0.0 0.02 0.04 0.06 0.08 1 10 time / ms A. Maus. C. Hertlein, KS, Macromol. Chem. Phys. 207 (2006), 1150

Crystallization isotherms lin crystalline fraction f f c 0.25 0.20 0.15 0.10 0.05 secondary crystallization 0.00 phenomenological time dependence: Avrami equation f c (θ)=f [1-exp{-(Kθ) n }] n: growth dimensionality +1 for cont. nucleation +?for in-filling processes log crystalline fraction f f c 1 0.1 0.01 1E-3 1E-4 0 10000 20000 30000 40000 crystallization time θ / s A(θ) 20µs slope = 3 crystalline fraction immobilized fraction 1000 10000 crystallization time θ / s f c f ra equal trends for crystalline and immobilized fractions no indication for a multi-stage process A. Maus. C. Hertlein, KS, Macromol. Chem. Phys. 207 (2006), 1150

Domain sizes in phase-separated polymers domain sizes: measure spin diffusion dipolar filter sequence rd selection spin diffusion τ diff MSE I mobile = f(τ diff ) phase-separated system with mobility contrast intensity / a.u. 35 30 25 20 15 10 τ diff -dependent FIDs: compensate for fast T 1 relaxation at 20 MHz onlypossiblewith full MSE refocussing! 5 170.9 ms 0 0.0 0.1 0.2 0.3 0.4 time / ms spin diffusion time 0.5 ms 9.2 ms 23.0 ms 39.7 ms 68.7 ms 295.3 ms

Spin diffusion in lamellar copolymer systems selected soft (PB) fraction intensity [a.u.] 1,0 0,8 0,6 0,4 0,2 12.5 0,0 0 5 10 15 20 25 sqrt(t) [sqrt(ms)] d (2/ π)[d soft = eff t s,0 m ] ½ ~ 14.3 nm (t s,0 m ) ½ soft fraction in blend 14.3 nm TEM SBS/PS 40/60 Blend correlation with macroscopic properties (e.g. clarity ) HOPS project w/ Y. Thomann, R. Mülhaupt, BASF

NMR in networks: chain order parameter b(t) n S(n)

Segmental dynamics in networks reference direction time-dependent orientation correlation function C α (t) = <f(α)> t,n,n α(t) log C α ~1% fast segmental motions (ns µs) slow, cooperative processes (ms s) (?) log time n network chains, N segments each residual average orientation ~ backbone order parameter S b (local!) dependent on N -1 (~ crosslink density) changes with mechanical deformation!

The order parameter descriptor of uniaxial orientational order: S = P 2 (cos α) α 1.0 0.5 0.0-0.5 20 40 60 80 α S = 1 S 0.7 S 0 S = 0.5 (NMR: average... is over time!)

Dynamic averaging of NMR interactions dipolar coupling tensor D γ i γ j /r ij 3 B 0 τ c (T) D stat = D zz 30 khz! ± D(β) static spectrum D xx β D yy D zz intermediate τ c 1/D zz D res S b fast-limit spectrum

Why multiple-quantum spectroscopy? D res ~ S b real system vs. ~ 1/T 2 * T 2* subject to non-dipolar effects multi-spin couplings slowdynamics order distributions... 6420-2 -4 ppm 6420-2 -4 ppm more specific experiment! static dipolar doublequantum spectroscopy τ DQ τ DQ DQ excitation DQ reconversion

ideal real Transverse relaxation vs. MQ spectroscopy dipolar time evolution Φ = (2/3) Φ D res P 2 (cos β) τ spectra rd τ FT τ I = f(τ) FID/Hahn echo I dip = <cos Φ > structure structure + dynamics rd 0.5 DQ excitation τ DQ DQ MQ experiment I ΣMQ = <sin 2 Φ> + <cos 2 Φ> I ΣMQ DQ = <sin 2 Φ> DQ ΣMQ: dynamics only! DQ reconversion τ DQ 0.5 I = f(τ DQ) ndq = DQ/ΣMQ: structure only! freq. time τ mobile impurities (sol )

Magnitude and time dependence of S b S b D res n n C(t) = (1-S b2 ) P 2 (cos α(0)) P 2 (cos α(t)) +S b 2 n ~ MHz-scale pre-averaging; quasi-static order: cross-link density, S 1/N chain stretching/swelling distributions! n n β(t) ~ khz-scale slow motions; loss of correlation: cross-link mobility (?) or reptation of linear chains C(t) = S b 2 P 2 (cos β(0)) P 2 (cos β(t)) intermediate dynamics!

DQ data analysis order paramters monomodal PDMS network (47k), unswollen 1.0 220 K simulated spin system: DQ intensity 0.8 0.6 0.4 0.2 0.0 295 K 340K CH 3 semi-analytical fitting function monomer unit 0 2 4 6 8 10 12 14 16 18 20 excitation time τ DQ / ms Si α α C C D res = 130 Hz S 3% KS, J.-U. Sommer, et al., J. Chem. Phys. 119 (2003), 3468

Model case for a heterogeneous microstructure bimodal end-linked PDMS networks 0.6 linear superpositions of experimental data for net0 and net100 DQ intensity 0.4 0.2 best-fit (monomodal) 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 excitation time τ DQ % short chains: net0 (monomodal) net10 net20 net30 net50 net70 net90 net100 / ms 3.5 PDMS precursors: long chains: 47k short chains: 0.8k KS, J.-U. Sommer, et al., J. Chem. Phys. 119 (2003), 3468

Fitting of chain order distributions/heterogeneities integral inversion by Tikhonov regularization (Weese and Honerkamp, 1992) relative amplitude.008 100% 90%.006 70% 50%.004 30%.002 20% 10% 0 0% 0 400 800 1200 1600 D res / Hz KS, J.-U. Sommer, et al., J. Chem. Phys. 119 (2003), 3468 KS, J. Am. Chem. Soc. 125 (2003), 14684

Chain order distributions in natural rubber rel. amplitude 15 10 5 NR-A1 NR-A2 NR-A4 NR-A10 gamma distribution = expected result for Gaussian statistics <r 2 >= n l 2 0 r l 0 0 0.0 0.2 0.4 0.6 0.8 1.0 D res /2π / khz no indication for an influence of Gaussian chain statistics! network chain polydispersity (exponential distribution) does not appear either! cooperativity/packing reduces/homogenizes conformational space direct implications for chain entropy!! KS, B. Herrero, M. A. López-Manchado, Macromolecules 38 (2005) 9650-9660

Quantitative modelling: NMR vs. swelling crosslink density x c ~ 1/M c ~ 1/N ~ S b ~ D res 1/M c (NMR) / mol/kg 1/M c + 1/M e 0.80 0.60 0.40 0.20 NR-A NR-B 1/M e, NR slope = 2.05±0.06 slope = 1 0.00 0.00 0.05 0.10 0.15 0.20 1/M c (swelling) / mol/kg natural rubber: NMR overestimates order twice rescaling yields consistent results (M te = 10 kg/mol) semi-quantitative elastomer characterization! problems at the detail level validity of the Kuhn length model? of single-chain concepts in general? 1/M c + 1/M te KS, B. Herrero, M. A. López-Manchado, Macromolecules 38 (2005) 9650-9660

Chain dynamics: the Andersen-Weiss model I Gaussian (2nd-moment) assumption DQ experiment: τ DQ Φ A τ DQ Φ B I DQ = < sin Φ A sin Φ B > I ΣMQ = < sin Φ A sin Φ B > + < cos Φ A cos Φ B > comparison: Hahn echo relaxometry: Φ A τ echo ΦB I Hahn = < cos (Φ A + Φ B )> Gaussian distribution of interaction frequencies (mainly from the powder distribution) approximation of the trigonometric functions, simplification of the ensemble average: I DQ = sinh{<φ A Φ B >} exp{ <Φ A2 >} I ΣMQ = exp{<φ A Φ B >} exp{ <Φ A2 >} I Hahn = exp{ ½<(Φ A + Φ B )>} Φ = (2/3) Φ = τ D res P 2 (cos β t ) dt D res P 2 (cos β) τ KS, J. Chem. Phys. 120 (2004) 454 KS, A. Heuer, Macromolecules 39 (2006) 3291-3303

Experimental test of the Andersen-Weiss model calculate theoretical 1 H Hahn echo decay from experimental MQ data (natural rubber, 3 phr sulfur, 20 MHz spectrometer) rel. intensity 1.0 0.8 0.6 0.4 0.2 experimental Hahn echo theoretical Hahn echo 12 C 38 C 130 C normalized DQ build-up 0.0 0 1 2 3 4 5 evolution time / ms KS, A. Heuer, Macromolecules 39 (2006) 3291-3303

Chain dynamics: the Andersen-Weiss model II e.g. I DQ = sinh{<φ A Φ B >} exp{ <Φ A2 >} with Φ A,B = τ D res P 2 (cos α t ) dt requires integration of C(t) = P 2 (cos α 0 )P 2 (cos α t ) log C α S b 2 fast segmental motions (ns µs) slow, cooperative processes (ms s) old model: neglect fast processes C(t) = S b2 P 2 (cos β 0 )P 2 (cos β t ) = S b2 exp{ τ DQ /τ s } log time

Slow dynamics: temperature dependence vulcanized natural rubber, 3 phr sulfur normalized DQ build-up I ndq = I DQ /I ΣMQ I ΣMQ : exp. sum intensity decay I DQ : exp. DQ build-up 1.0 1.0 successful normalization procedure! norm. intensity 0.8 0.6 0.4 norm. intensity 0.8 0.6 0.4 285K 340K 403K ΣMQ DQ 0.2 0.2 0.0 0 2 4 6 DQ evolution time / ms 0.0 0 2 4 6 8 10 DQ evolution time / ms KS, A. Heuer, Macromolecules 39 (2006) 3291-3303

Slow-motion model 1 order parameter S b 0.1 ndq DQ ΣMQ T 0.01 g = 213 K 200 240 280 320 360 400 440 480 temperature / K expected plateau for D res from DQ-buildup unphysical result from sum intensity decay correlation time τ c / ms 100 10 1 0.1 0.01 1e-3 τ slow (DQ) τ slow (ΣMQ) T g = 213 K 200 240 280 320 360 400 440 480 temperature / K complete disagreement between the different τ c unphysical temperature dependence (not activated?) KS, A. Heuer, Macromolecules 39 (2006) 3291-3303

Fast and slow dynamics ΣMQ DQ ndq log C α S b 2 fast segmental motions (ns µs) slow, cooperative processes (ms s) old model: neglect fast processes new model: consider fast processes! importance of slow processes? log time

Better models 1.0 0.8 321K SMQ DQ exponential correlation function C(t) = (1-S b2 ) exp{-t/τ fast } + S b 2 exp. cf. τ fast norm. intensity 0.6 0.4 exp. cf. τ fast,τ slow power-law cf. exponential correlation function with slow decay C(t) = (1-S b2 ) exp{-t/τ fast } + S b2 exp{-t/τ slow } 0.2 0.0 0 2 4 6 8 10 12 14 DQ evolution time / ms power-law correlation function C(t) = (1-S b2 ) (τ 0 /t) κ + S b 2 for t > τ 0 validity/fitting limit! KS, A. Heuer, Macromolecules 39 (2006) 3291-3303

Better models correlation time τ c / ms power-law onset τ 0 / ms 100 10 1 0.1 0.01 1e-3 1e-4 0.01 1e-3 1e-4 1e-5 1e-6 WLF fit T g = 213 K 200 240 280 320 360 400 440 480 temperature / K exponential correlation function C(t) = (1-S b2 ) exp{-t/τ fast } + S b 2 1e-7 0.2 1e-8 T g = 213 K 0.0 200 240 280 320 360 400 440 480 temperature / K τ slow (DQ) τ slow (ΣMQ) τ fast (sim. fit) 1.2 1.0 0.8 0.6 0.4 power-law exponent κ no evidence for a slow process! KS, A. Heuer, Macromolecules 39 (2006) 3291-3303

Comparison with melt dynamics natural rubber, 3 phr sulfur (A3) vs. unvulcanized (lin) 1.0 NR-A3 NR-lin ndq norm. intensity 0.8 0.6 0.4 ΣMQ DQ 285K ΣMQ DQ 403K NR-A3 NR-lin 0.2 340K 0.0 0 2 4 6 8 10 DQ evolution time / ms 0 2 4 6 8 10 DQ evolution time / ms 0 2 4 6 DQ evolution time / ms no observable "plateau" value for S b influence of reptation dynamics! (isotropization on a timescale τ d ) KS, A. Heuer, Macromolecules 39 (2006) 3291-3303

Comparison of permanent networks and melts lin. poly(butadiene), 50% cis, 45% trans Graf, Heuer, Spiess, PRL 80 (1998) 5738 order parameter S b 1 0.1 0.01 ~ entanglement level S b,e T - T g / K NR-A3 NR-A04 NR-lin unobservable due to reptation! 0 40 80 120 160 200 240 segmental averaging at T = T g + 50K probes a length scale << a "local packing" (Doi-Edwards: a ~ entanglement length, associated with τ e ) slow segmental averaging, important when conformational space is large! no proper timescale separation (τ e, τ R, τ d )?

Study of gelation increasing crosslink density ω melt/solution percolation threshold elastomer rheology: F(ω) G(ω) η(ω)

Rheological determination of the gel point Winter/Chambon: gel point = loss tangent [ tan δ(ω) = ω η(ω)/g(ω) ] becomes independent of frequency tan δ 1000 100 10 1 0.1 gel point r = 0.423 50 rad/s 31.5 rad/s 19.9 rad/s 12.6 rad/s 7.9 rad/s 5.0 rad/s 3.15 rad/s 2.00 rad/s 1.26 rad/s 0.79 rad/s 0.50 rad/s bulk crosslinking of PDMS, varying stoichiometric ratio r time consuming! 0.35 0.40 0.45 0.50 r

norm. intensity 1.0 0.8 0.6 0.4 0.2 Gel point by low-field MQ NMR single-point detection of residual couplings comparisonwithrheology (Winter/Chambon) quantitative analysis: sol fraction, network properties bimodal structure at low conversion ΣMQ sol ndq 0.0 0 10 20 30 40 DQ evolution time / ms r = 0.36 r = 0.41 r = 0.47 r = 0.506 r = 0.56 r = 0.62 r = 0.67 ndq intensity @ 5 ms sol fraction statistical linking (vulcanization) 0.1 0.01 1E-3 PDMS 441 PDMS 424 noise 1E-4 0.00 0.02 0.04 0.40 0.50 0.60 0.70 r 1.0 0.8 0.6 0.4 0.2 PDMS 441 PDMS 424 0.0 0.00 0.02 0.04 0.40 0.50 0.60 0.70 r end-linking KS, M. Gottlieb, R. Liu, W. Oppermann, Macromolecules 40 (2007) 1555-1561

gel points Gelation kinetics by low-field MQ NMR ndq intensity @ 4 ms gel point time / s 0.20 0.16 0.12 0.08 0.04 0.00 0 5000 10000 15000 20000 gelation time / s 6000 4000 2000 DLS NMR c = 0.05 g/ml c = 0.04 g/ml c = 0.03 g/ml c = 0.02 g/ml τ NMR 0 0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 polymer concentration / g/ml 6000 4000 2000 gelation time constant / s dilute solutions of P(S-co-AMS) in toluene-d 8 real-time measurement of DQ intensities comparisonwithdls quantitative NMR analysis: 13-50% network chains 56-43% dangl. chains, loops, microgels 31-7% mobile sol KS, M. Gottlieb, R. Liu, W. Oppermann, Macromolecules 40 (2007) 1555-1561

Conclusions low field but high-end science easy set-up: insert sample, adjust gain, offset and 90 pulse, start polymer crystallinity, morphology, crystallization kinetics domain structures in block-copolymers in-depth elastomer characterization, new polymer physics detailed insights into gelation

Thanks very much... Andreas Maus Christopher Hertlein, G. Strobl (U Freiburg) Yi Thomann, R. Mülhaupt (U Freiburg) Jens-Uwe Sommer (ICSI Mulhouse/IPF Dresden) A. Vidal, B. Haidar, P. Ziegler, O. Spyckerelle (ICSI) Berta Herrero, M.A. López-Manchado (ICPT-CSIC, Madrid) Moshe Gottlieb (U of the Negev, Beer Sheva) Ruigang Liu, W. Oppermann (TU Clausthal) Landesstiftung Baden-Württemberg, DFG (SFBs 428 & 418), Fonds der Chemischen Industrie