Lecture 18 Long Wavelength Spectroscopy

Similar documents
16 & 17: Molecular Spectroscopy

ay Introduction

Rotations and vibrations of polyatomic molecules

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin

Molecular Structure & Spectroscopy Friday, February 4, 2010

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

Some recent work I. Cosmic microwave background, seeds of large scale structure (Planck) Formation and evolution of galaxies (Figure: Simpson et al.

Lecture 4: Polyatomic Spectra

The Interstellar Medium Astronomy 216 Spring Al Glassgold University of California, Berkeley

Principles of Molecular Spectroscopy

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

Chem 442 Review of Spectroscopy

José Cernicharo IFF-CSIC

Lecture 7: Molecular Transitions (2) Line radiation from molecular clouds to derive physical parameters

CHAPTER 13 LECTURE NOTES

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

Chemistry 483 Lecture Topics Fall 2009

Vibrational and Rotational Analysis of Hydrogen Halides

( ) electron gives S = 1/2 and L = l 1

CHEM Atomic and Molecular Spectroscopy

Physics and Chemistry of the Interstellar Medium

LECTURES ON QUANTUM MECHANICS

MOLECULAR SPECTROSCOPY

Relativistic corrections of energy terms

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients

Chemistry 881 Lecture Topics Fall 2001

eigenvalues eigenfunctions

NPTEL/IITM. Molecular Spectroscopy Lecture 2. Prof.K. Mangala Sunder Page 1 of 14. Lecture 2 : Elementary Microwave Spectroscopy. Topics.

Physics and chemistry of the interstellar medium. Lecturers: Simon Glover, Rowan Smith Tutor: Raquel Chicharro

Molecular energy levels and spectroscopy

Possible Extra Credit Option

Diffuse Interstellar Medium

Atoms and Spectroscopy

ATMO 551a Fall Resonant Electromagnetic (EM) Interactions in Planetary atmospheres. Electron transition between different electron orbits

Lecture 2 Line Radiative Transfer for the ISM

4. Molecular spectroscopy. Basel, 2008

Rotational spectroscopy., 2017 Uwe Burghaus, Fargo, ND, USA

Physics 1C Lecture 29B

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

Astrochemistry the summary

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger

Nuclear models: Collective Nuclear Models (part 2)

Lecture 7: Electronic Spectra of Diatomics

Vibrations and Rotations of Diatomic Molecules

AS GRS 713 Astronomical Spectroscopy

Intro/Review of Quantum

Gas 1: Molecular clouds

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds

Intro/Review of Quantum

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

19. Interstellar Chemistry

Atomic Structure & Radiative Transitions

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Lecture 10 Diatomic Vibration Spectra Harmonic Model

Physical Processes in Astrophysics

The Interstellar Medium

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

ATMOS 5140 Lecture 11 Chapter 9

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

where n = (an integer) =

1. The most important aspects of the quantum theory.

Physical Chemistry - Problem Drill 15: Vibrational and Rotational Spectroscopy

1. Why photons? 2. Photons in a vacuum

Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

CHEM 301: Homework assignment #12

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Saturation Absorption Spectroscopy of Rubidium Atom

Interaction of Molecules with Radiation

61 and 91) in excitation levels n = 4-8 from rotational radiofrequency

Observing Habitable Environments Light & Radiation

Spectra of Atoms and Molecules. Peter F. Bernath

Electronic transitions: Vibrational and rotational structure

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Chapter4: Quantum Optical Control

8: Composition and Physical state of Interstellar Dust

Lecture 23 Internal Structure of Molecular Clouds

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

CHAPTER 22. Astrophysical Gases

Problem Set 8 Solutions

Electron spin resonance

MOLECULAR ENERGY LEVELS DR IMRANA ASHRAF

21. Introduction to Interstellar Chemistry

Lecture 6 - spectroscopy

Interstellar Medium and Star Birth

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules

wbt Λ = 0, 1, 2, 3, Eq. (7.63)

Physics of atoms and molecules

Vibrational-Rotational Spectroscopy. Spectroscopy

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Atomic Structure and Processes

Ch 7 Quantum Theory of the Atom (light and atomic structure)

R. D. Gehrz a E. E. Becklin b, and Göran Sandell b

6.05 Computational Raman Spectroscopy

RFSS: Lecture 6 Gamma Decay

Transcription:

Lecture 18 Long Wavelength Spectroscopy 1. Introduction. The Carriers of the Spectra 3. Molecular Structure 4. Emission and Absorption References Herzberg, Molecular Spectra & Molecular Structure (c. 1950, 3 volumes) Herzberg, The Spectra & Structure of Simple Free Radicals, (Cornell, 1971), esp. Parts I & II Townes & Schawlow, "Microwave Spectroscopy" (Dover 1975) Astro texts: Lightman & Rybicki, Ch. 10 Shu I, Chs. 8-30 Dopita & Sutherland, Ch. 1 Palla & Stahler, Ch. 5

1. Introduction to Long Wavelength Spectroscopy This course has so far dealt mainly with warm diffuse gas. Perhaps it was fitting that the very last discussion of the warm and very diffuse IGM ended with the question of how the first molecules formed and how molecular hydrogen cooled the cosmic gas enough to form the first stars. The argument has been made that the theory of primordial star formation is simpler than recent star formation because of the absence of dust and magnetic fields. But this misses the important point that theory by itself is nothing without tests and guidance from observations. We therefore switch our focus to the nearby clouds that are now making stars in nearby galaxies (the main topic of the second half of the course) and the central role of long wavelength astronomy.

Signatures of the Cool ISM Recall that much of Lecture 1 introduced long wavelength observations of the ISM and noted the primary roles of dust and molecules. COBE 0.1-4 mm spectrum of the Galactic plane. Major IR Space Observatories IRAS 1983 COBE 1991 ISO 1996 SPITZER 003 Why doesn t the COBE spectrum show molecular features?

Molecular Emission Unlike atoms, molecules can produce many long-wavelength vibrational & rotational transitions by virtue of having (extra degrees of freedom from) more than one nucleus. The energies of such transitions cover a wide range. Some rough rules are: Vibrational transitions occur in the NIR-MIR e.g., H 1-0 S(1) at.1 µm and CO 1-0 at 4.6 µm Rotational transitions occur in the MIR FIR-mm band e.g., H 0-0 S(0) at 8. µm & CO J=1-0 at.6 mm Optical and UV transitions are spread over many lines,

Discovery of Interstellar Molecules Lecture 1 discussed the discovery of interstellar molecules. First optical detections: CH Dunham et al. (1937) CN Swings & Rosenfeld (1937) CH + McKellar (1940) Radio detections (pioneered by Townes & collaborators): OH Weinreb et al. (1963) NH 3 & H O Cheung et al. 1968, 1969 H CO Snyder at al. (1969) CO Wilson, Jefferts, & Penzias (1970). UV detection H Carruthers (1970)

Phillips & Keene Proc IEEE 80 166 199 Schematic and now dated sub-mm spectrum of a molecular cloud showing fine structure & molecular emission lines (only the lowest rotational transition is shown). Not all of the suggested species have been detected. See real ISO spectra on the next pages.

ρ Oph Molecular Cloud E. van Dishoeck, ARAA 4 119 004

ISO NIR-MIR spectrum of a shock in Orion E. van Dishoeck ARAA 4 119 004

. Carriers of the Spectra Under their cool or not too warm conditions, interstellar clouds emit mainly in molecular rotational & atomic fine structure transitions. As we shall see, other small energy transitions also play important roles. a. Rotational Transitions The signature example is the rigid rotor whose energy levels are given by h E J = J ( J + 1) B B = I For a diatomic molecule, I = µ 1 r 1. With typical separations in Angstroms, the masses of the molecule are determining. e.g., B(CO) = k B (.77K) B(H ) = k B (51 K) More about rotational transitions below.

b. Fine structure transitions Although neutral atoms may not have fine structure (because either the spin or orbital angular momentum is zero), some of their ions will have these transitions, as shown in this small table (wavelengths in microns). Atom I II III C ( 3 P,1,0 ) 370.4 609.1 157.7 N ( 4 S 3/ ) 10.9 05. 57.3 O ( 3 P 0,1, ) 145.5 63.18 51.81 88.36 NB Two numbers appear for 3 P configurations & one for P.

c. Hyperfine Transitions Clouds with molecules also are partially atomic, so the classic H I 1-cm transition remains relevant. In addition, molecules with non-zero nuclear spin add hyperfine structure to molecular spectra, the primary example being the main nitrogen isotope 14 N with I = 1. d. Λ-Doubling A form of molecular spin-orbit coupling. Λ is the projection of the orbital angular momentum on the symmetry axis of a molecule. The splitting in OH has a convenient wavelength of ~ 18 cm. e. Inversion Splitting - Pyramidal molecules may have a well spaced tunneling inversion, e.g., it is ~ 1 cm. In NH. As will be discussed later, it provides an excellent thermometer for molecular regions. f. Radio-Recombination Lines Transitions between atomic levels of high principal quantum number (Rydberg states) range form cm to mm wavelengths (for n varying from > 50 to < 30). The small A-values may be compensated by a tendency to mase.

Erot 3. Molecular Structure The fundamental idea is the Born-Oppenheimer Approximation. Because of their large mass, the motion of nuclei is much slower than the electrons. E E + E + E 3 10 10 ev, ro t E vib Averaging over the fast electronic motion gives the nuclear potential energy as a function of the nuclear separations. This might be called a frozen nucleus approximation. vib el 10 10 ev, E el V(R) 1 10 ev R Figure: Schematic potential for a diatomic model, with asymptotic R -6 van der Waals interaction & harmonic oscillator potential at minimum

Going Beyond Born & Oppenheimer Within the Born Oppenheimer picture, the nuclei can vibrate and rotate about the equilibrium positions. Beyond that, the most important interactions are magnetic interactions between their various orbital & spin angular momenta, some to be discussed below. In summary, molecular dynamics is reduced to two famous problems in classical (& quantum) physics: I. Rigid Body Motion II. Normal Modes of Oscillation The first relates to the rotational motion of astrophysically interesting molecules with wavelengths in the FIR-mm bands and the second to vibrational motions observable at NIR wavelengths.

Rotational Motion The rotational motion of a molecule is determined by its moments of inertia & angular momentum. Classically, any object has three orthogonal principal moments of inertia (diagonal inertia tensor) and simple associated expressions for the rotational energy and angular momentum. This carries over to quantum mechanics, and it is customary to classify the rotational properties of molecules according to the values of the principle moments of inertia. The principle moments of inertia are designated Ia, Ib, and Ic in order of increasing magnitude

Linear Molecules & Symmetric Tops A molecule which is linear or has an axis of rotational symmetry is called a symmetric top Either I c = I b > I a or I c > I b = I a Linear molecules have a small I about the axis of the molecule so they are of the first variety & are called prolate symmetric tops Other molecules, e.g., benzene, have the largest moment of inertia about the symmetry axis & are called oblate symmetric tops Molecules which are spherically symmetric, e.g, methane have three equal moments of inertia and are called spherical tops Molecules I c I b I a are asymmetric tops

Symmetric Top Rotators Classically, the energy of rotation is Suppose I x = I y = I b. Since J = J x + J y + J z z z y y x x z z y y x x I J I J I J I I I E 1 1 1 + + = + + = ω ω ω + = b c z b I I J I J E 1 1 The next step is to quantize these classical expressions.

Symmetric Top Rotators (cont d) Both the square & the projection on the symmetry axis of the angular momentum are good quantum numbers. NB The projection on a fixed axis is also conserved; it is usually denoted M z and enters into the Zeeman effect. J = J ( J + 1) h and J z = Kh J =0, 1,, K =0, 1,, J Hence the rotational energy is E = h I b J ( J or E = BJ ( J + 1) + h I c + 1) + ( C h I b B) K K on introducing the rotational constants B & C.

Some Rules of the Game for Symmetric Tops J can have any integral value As a projection of J, K has (J+1) values, +J, J-1, -J+1, -J The energy depends on K, so there are only J+1 distinct values, and the levels start at J=K For a prolate top (cigar) C-B > 0: levels increase with K For an oblate top (pancake) C-B < 0: levels decrease with K K =0 reduces to the simple rotational ladder of a linear molecule Note on asymmetric tops (all unequal moments): Only J and E are conserved. The states are labeled by J and (K -,K + ), which become conserved projections in the limit of prolate & oblate symmetric tops.

Energy Levels for Oblate & Prolate Symmetric Tops Prolate Oblate J K Prolate

4. Radiative Properties of Molecules a. Rotational Transitions The molecule should have a permanent dipole moment generate a rotational Spectrum. Molecules like H, C, O, CH4, CH do not have strong rotational spectra. For symmetric molecules like H, only quadrupole transitions occur with J =, e.g. λ( 0) = 8 µm etc. b. Selection Rules The general rules apply, albeit in new forms dictated by the notation of molecular spectroscopy. For a symmetric top, the dipole moment lies along the symmetry axis. The radiation field cannot exert a torque along this axis, so the selection rule for a pure rotational transition is K = 0 (and J = ±1).

c. Transition Probabilities for Ro-vibrational Transitions Convention: lower level has double, upper level has single prime v,j v,0 1st level in v band v,j V,0 1 st level in v band For dipole transitions, J = 0, ±1 allows three possibilities: P-transitions: J =J -1, i.e., 0-1, 1-, etc. R-transition: J =J +1, i.e., 1-0, -1, etc, Q-transitions J =J, i.e., 1-1, -, etc,

A d. A-value for Dipole Radiation From a Simple Rotor - the standard atomic formulae are slightly changed: 64π 3h ν ( ) c S( J ', J '') J ' + 1 4 3 ( v' J ' v'' J '') = J M J (v'' The upper level is (v J ) and the lower level is (v J ). S(J,J ) is the Honl-London factor. (v J M v J ) is the dipole matrix element = J ' 1 S( J ', J '') = J '( J ' + 1) J ''( J '' + 1) for J ' = J '' + 1 ( R) and J ' + 1 for J ' = The absorption cross section is σ (v' J ', v'' J '') = f (v' J ', v'' J '') = πe f (v' J ', v'' J '') ϕ( ν ) m c J ' + 1 λ(v'' J '', v' J ') 3(J '' + 1) λ(00,01) e '' J '' 1 ( P) A(v' J ', v'' J '') A(01,00) v' ')

Transition Energy Progressions For the pure rotational spectrum of a rigid rotor, the photon energy in the transition J =J J =J-1 E J = E( J ) E( J 1) = BJ generates the sequence B, 4B, 6B.... For the ro-vibrational spectrum, the transitions involve the fixed energy difference between the vibrational levels (and the electronic levels for an optical or UV transition) plus the difference in rotational energies: E( v' J ', v'' J '') = E( v', v'') vib + B' J '( J ' + 1) B'' J ''( J '' + 1) For no change in the electronic state, B & B are about the same. Substituting the appropriate changes for R and P transitions, J =J +1 & J =J -1 respectively, yields:

E( v' E( v' J J ', v'' ', v'' J J '') '') R P = E( v', v'') = E( v', v'') vib vib + BJ ' B( J ' + 1) The R-transitions generate a sequence of rovib transition energies just like a simple rigid rotor, with energies laddered on top of the reference energy (the difference between the first level in each vibrational energy potential). The P-transitions generate the opposite sequence of rovib transition energies with energies laddered below the reference energy -6B -4B -B 0 B B 6B P-transitions R-transitions