High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

Similar documents
High-T c superconductors

Metal-insulator transitions

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000

Mott insulators. Mott-Hubbard type vs charge-transfer type

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

Material Science II. d Electron systems

Temperature-Dependent Angle-Resolved Photoemission Study of High-T c Superconductors

The High T c Superconductors: BCS or Not BCS?

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris

Photoemission Study of the High-Temperature Superconductor La 2 x Sr x CuO 4

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Heavy Fermion systems

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution.

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Photoemission Studies of Strongly Correlated Systems

Doping evolution of the electronic structure in the single-layer cuprates Bi 2 Sr 2 x La x CuO 6+δ : Comparison with other single-layer cuprates

Magnetism in correlated-electron materials

Can superconductivity emerge out of a non Fermi liquid.

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

Material Science II. d Electron systems

arxiv: v1 [cond-mat.supr-con] 28 May 2018

Photoemission study of Bi-cuprate high-t c superconductors in the lightly-doped to underdoped regions

Neutron scattering from quantum materials

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

The Hubbard model in cold atoms and in the high-tc cuprates

High temperature superconductivity - insights from Angle Resolved Photoemission Spectroscopy

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

Photoemission and the electronic structure of magnetic oxides. Dan Dessau University of Colorado, Boulder Duane F625

Electron State and Lattice Effects in Cuprate High Temperature Superconductors

This article is available at IRis:

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

Theoretical Study of High Temperature Superconductivity

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Quantum phase transitions in Mott insulators and d-wave superconductors

NiO - hole doping and bandstructure of charge transfer insulator

Inelastic light scattering and the correlated metal-insulator transition

How to model holes doped into a cuprate layer

What's so unusual about high temperature superconductors? UBC 2005

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap

Visualizing the atomic scale electronic structure of the Ca 2 CuO 2 Cl 2 Mott insulator

Correlatd electrons: the case of high T c cuprates

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ

Resonant Inelastic X-ray Scattering on elementary excitations

High Temperature Superconductivity - After 20 years, where are we at?

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy

Surfing q-space of a high temperature superconductor

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

arxiv: v2 [cond-mat.supr-con] 21 Aug 2008

High temperature superconductivity

Kyle M. Shen. University of British Columbia Department of Physics and Astronomy tel : fax : kmshen [AT] physics.ubc.

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Cuprate high-t c superconductors

An unusual isotope effect in a high-transition-temperature superconductor

Strong spin triplet contribution of the first removal state in the insulating regime of

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Fermi surface evolution in the antiferromagnetic state for the electron-doped t-t -t -J model

SUPPLEMENTARY INFORMATION

μsr Studies on Magnetism and Superconductivity

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

2nd Annual International Conference on Advanced Material Engineering (AME 2016)

Introduction to Angle-Resolved Photoelectron Spectroscopy Andrea Damascelli

Universal scaling relation in high-temperature superconductors

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

Lattice modulation experiments with fermions in optical lattices and more

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

A quantum dimer model for the pseudogap metal

Optical and transport properties of small polarons from Dynamical Mean-Field Theory

Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites

arxiv: v1 [cond-mat.supr-con] 5 Dec 2017

Quasiparticle dynamics and interactions in non uniformly polarizable solids

SUPPLEMENTARY INFORMATION

Phases of Na x CoO 2

On-site Coulomb energy versus crystal-field splitting for the insulator-metal transition in La 1Àx Sr x TiO 3

Angle resolved photoemission spectroscopy (ARPES) to measure ρ (k,ω)

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Mapping the electronic structure of each ingredient oxide layer of high T c cuprate superconductors

Quantum dynamics in many body systems

Electronic structure calculations results from LDA+U method

Fine Details of the Nodal Electronic Excitations in Bi 2 Sr 2 CaCu 2 O 8+δ

arxiv:cond-mat/ v1 8 Mar 1995

The pseudogap state in high-t c superconductors: an infrared study

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

ARPES study of many-body effects and electronic reconstructions in misfit cobaltates

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor

Transcription:

High-T c superconductors Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

High-T c superconductors Parent insulators

Phase diagram of high-t c superconductors CuO 2 plane T [K] 100 antiferromagnetic 10 pseudo-gap superconducting spin glass? superconducting 0.2 0.1 Electron doping 0 antiferromagnetic insulator 0.1 0.2 0.3 Hole doping / Cu atom

Zaanen-Sawatzky Sawatzky-Allen diagram = W E g ~ W charge-transfer regime CuO 2 plane 3+ charge-transfer regime 3+ 2+ 2+ 2+ 2+ p-metal d-metal Mott-Hubbard regime E g ~ U - W U = W 4+ negative- regime 5+ 4+ 4+ 4+ 3+ 3+ 3+ 3+ 2+ 3+ 3+ 3+ 3+ Mott-Hubbard regime J. Zaanen, G.A. Sawatzky, J.W. Allen, PRL 85 A.E. Bocquet et al., PRB 96

p-d model to effective single-band model Mott-Hubbard type insulator Charge-transfer type insulator Effective one-band model Metal d band E F -5 ev -10 ev UHB LHB Oxygen p band U: d-d Coulomb energy : p-to-d charge-transfer energy UHB Oxygen p band LHB U p-d hybr. UHB: upper Hubbard band LHB: lower Hubbard band UHB Zhang-Rice singlet band = effective LHB Oxygen p band LHB Zhang-Rice singlet (ZRS) oxygen hole M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 98 Cu spin

Single-band model description of CuO 2 plane in high-t C cuprates p-d model t t t Single-band (Hubbard or t-j) model t t t t-j model (t-t -t -J model) t : nearest-neighbor hopping t : next-nearest-neighbor hopping t : third-nearest-neighbor hopping

Electronic structure of the parent insulator Sr 2 CuO 2 Cl 2, Ca 2 CuO 2 Cl 2 Photoemission spectra AF Brillouin zone k y (π /a) B.O. Wells et al., PRL 95 F. Ronning et al., Science 98 k (π/a)

Electronic structure of the parent insulator Sr 2 CuO 2 Cl 2, Ca 2 CuO 2 Cl 2 Band dispersion AF Brillouin zone k y (π/a) k x (π/a) t-j model (t-t -t -J model) Exp: B.O. Wells et al., PRL 95 C. Kim et al., PRL 98 Th: T. Tohyama et al., JPSJ 00 t t

Electron-phonon interaction effect in Ca 2 CuO 2 Cl 2 Photoemission spectra zero-phonon line multiple-phonon lines Band dispersion chemical potential µ µ polaronic shift B A polaron µ bare electron K.M. Shen et al., PRL 05

Electron-phonon interaction in the insulating phase of VO 2 Simulations using independent-boson model multiple-phonon lines zero-phonon line 20 15 10 5 0 Energy /ω 0 K. Okazaki et al. PRB 04

Chemical potential mystery in hole-doped and electron-doped superconductors Nd 1.85 Ce 0.15 CuO 4 µ µ La 1.85 Sr 0.15 CuO 4 =µ optical gap = 1.5 ev S. Uchida et al. µ 2.0 ev J. W. Allen et al., PRL 90 H. Namatame et al., PRB 90

Resonant inelastic x-ray x scattering from Ca 2 CuCl 2 O 2 expt. data U-t-t -t Hubbard model Resonant inelastic x-ray scattering Z. Hassan et al. Science 00

Band structure of undoped CuO 2 plane Conduction-band minimum ~ (π,0) Optical gap ~ 1.5 ev µ of Nd2CuO4 µ, chem. pot. jump ~ 0.4 ev µ of La2CuO4 polaronic shift ~ 0.5 ev Valence-band maximum ~ (π/2,π/2) Tsutsui et al. PRL 99

High-T c superconductors Carrier doping

Metal-insulator transition induced by hole doping

Phase diagram of La 2-x Sr x CuO 4 T [K] 100 antiferromagnetic insulator pseudo-gap metal 10 normal metal (Fermi liquid) superconductor spin glass? 0 0.1 0.2 0.3 Hole / Cu atom

Initial stage of hole doping into CuO 2 plane: Chemical potential shift or pinning? UHB LHB spectral weight transfer ~< 0.4 ev µ µ shift Hole doping Ca 2-x Na x CuCl 2 O 2 Bi2212 Zhang-Rice singlet ~ effective lower Hubbard band ( LHB ) oxygen hole spectral weight transfer µ ~ 0.5 ev µ pinning La 2-x Sr x CuO 4 Cu spin

Hole doping into CuO 2 plane: Chemical potential shift or pinning? µ pinning in La 2-x Sr x CuO 4 µ shift in Ca 2-x Na x CuCl 2 O 2 LHB LHB LHB QP QP LHB LHB QP k y (π/a) AF Brillouin zone T. Yoshida et al., PRL 03 π/2,π/2 k (π/a) K.M. Shen et al., PRL 05

Chemical potential shift in high-t c cuprates from core-level photoemission Ca 2-x Na x CuO 2 C 2 La 2-x Sr x CuO 4 Bi2201 YBa 2 Cu 3 O y Nd 2-x Ce x CuO 4 µ shift µ pinning Large µ shift in overdoped region normal Fermi liquid Electron doping Hole doping / Cu A. Ino et al., PRL 79, 97 N. Harima et al., PRB 01 N. Harima et al., PRB 03 H. Yagi et al.,

Chemical potential shift in the presence of charge stripes?

Spectral weight transfer induced by hole doping from O 1s x-ray x absorption spectra Doping dependence Angular dependence QP µ µ UHB QP spectral weight transfer spectral weight transfer QP UHB Consistent with Zhang-Rice singlet UHB oxygen hole d(x 2 -y 2 ) - p x, p y C.T. Chen et al., PRL 91, 92 Cu spin

Spectral weight transfer induced by hole doping µ shift overdoped --> Fermi liquid Hole doping µ shift/pinning spectral weight transfer LHB(ZRS) UHB H. Eskes et al., PRL 91 effective Hubbard model

High-T c superconductors Band structure and Fermi surface

Phase diagram of La 2-x Sr x CuO 4 T [K] 100 antiferromagnetic insulator pseudo-gap metal 10 normal metal (Fermi liquid) superconductor spin glass? 0 0.1 0.2 0.3 Hole / Cu atom

Spectral function of correlated Fermi liquid quasi-particle (QP) peak incoherent part incoherent part k F k F Fermi surface k F is defined by * Discontinuity in n k * E F crossing of infinitely sharp QP peak A. Damascelli et al., RMP 01

Fermi surface and d-wave superconducting gap/pseudogap pseudogap in high-t C cuprates CuO 2 plane t t t t electron d-wave order parapeter: (k) = 0 (cosk x a -cosk y a) hole Node Anti-node t t t Band structure and Fermi surface: E(k) = -2t(cos k x a+cos k y a) - 4t cos k x a cos k y a -2t (cos2k x a+cos2k y a)

Angle-Resolved Photoemission Spectroscopy ARPES EF below EF Band dispersion k ky Fermi sruface kx

Advanced Light Source ARPES beamline 10.0.1 SGM beamline + Scienta SES-2000 X. J. Zhou, Z.-X. Shen, Z. Hussain

Stanford Synchrotron Radiation Laboratory ARPES beamline 5-45 Scienta SES-2000 NIM beamline D. Liu, C. Kim, Z.-X. Shen

ARPES: Fermi surface and band mapping hν = 55.5 ev EF E φ EF θ E k T. Yoshida, Thesis

Fermi surface electron hole Tight binding fit: E(k)= -2t(cos k x a+cos k y a) -4t cos k x a cos k y a -2t (cos2k x a+cos2k y a) x Tight-binding fit Intensity peak in k-space T. Yoshida et al.

Band dispersion in the nodal direction: Quasi-particle Energy relative to E F (ev) 0.0-0.2-0.4 x = 0.03 x=0.07 x=0.15 (π/2,π/2) (π/2,π/2) (π/2,π/2) (π/2,π/2) x=0.22 Tight-binding fit Fermi velocity of nodal QP is doping-independent! X.J. Zhou et al., Nature 03 T. Yoshida et al.

Pseudogap/superconducting gap in the anti-nodal nodal region Energy relative to E F (ev) pseudogap pseudogap superconducting gap Tight binding fit T. Yoshida et al.

Remnant Fermi-surface crossing in lightly-doped La 2-x Sr x CuO 4 pseudogap pseudogap T. Yoshida et al.

Luttinger sum rule is satisfied! Experimental Fermi surface Luttinger sum rule hole 1+ x FS electron 1- x FS x FS = x x x violated! La 2-x Sr x CuO 4 Ca 2-x Na x CuO 2 C 2 Tight-binding fit Intensity peak In k-space T. Yoshida et al.

High-T c superconductors Pseudogap and superconducting gap

Pseudogap and Fermi arc electron hole Tight binding fit: E(k)= -2t(cos k x a+cos k y a) -4t cos k x a cos k y a -2t (cos2k x a+cos2k y a) x Tight-binding fit Intensity peak in k-space T. Yoshida et al.

Pseudogap behaviors of La 2-x Sr x CuO 4 Superfluid density Carrier number Y.J. Uemura et al., PRL 89 Pauli susceptibility H. Takagi et al., PRB 89 Electronic specific heat T. Nakano et al., PRB 94 AFI AF SC metal N. Momono et al., JPSJ 03 Hole doping x

Density of QP s and electronic specific heats Density of QP s from ARPES Density of QP s at E F compared with specifit heat γ γ: N. Momono et al., Physica C 94

Density of QP s and electronic specific heats Fermi arc length Density of QP s at E F compared with specifit heat γ γ: N. Momono et al., Physica C 94

Superconducting gap and small pseudogap in La 2-x Sr x CuO 4 Superconducting gap /small pseudogap (Large) pseudogap k~(π,0) Superconducting gap /small pseudogap A. Ino et al., PRB 02

High-T c superconductors Transport properties

Drude fomulae of electrical conductivity Equation of motion for charge carriers m*dv/dt = -ee - m*v/τ = 0 v = eeτ/m* j = nev = σe = ne 2 Eτ/m* conductivityσ = ne 2 τ/m* = ne 2 l/hk F = ne 2 /hk F k resistivity: ρ = 1/σ m*v F = hk F, τ = l/v F l = 1/ k can be measured by ARPES

Fermi velocity, Fermi momentum, and mean-free path from ARPES data Fermi velocity v F k kink? T. Yoshida et al., PRL 03 k F cf) Mn oxide: Y. D. Chuang et al., Science 01 Effective mass m*= hk F /v F Scattering rate 1/τ =v F /l Mean-free path l = 1/ k ~ 30 A can be measured by ARPES σ = ne 2 /hk F k = xe 2 /hk F k ρ ~ 3.7 mωcm cf) ρ DC ~ 4.4 mωcm

Boltzmann transport k y E (π,π) k F θ v F τ = l l = 1/ k k x

Doping and momentum dependence of MDC width Mean free path l= 1/ k ~7>>1/k F Intensity (arb. units) ~20 1.0 0.8 0.6 0.4 0.2 0 x=0.03 x=0.063 x=0.15 x=0.22 x=0.30 k -0.10-0.05 0 0.05 0.10 Momentum (π/a) α [degree] T. Yoshida et al.,

Boltzmann transport on the Fermi arc Complete Fermi surface Fermi arc Ω ρ ρ Ω ρ ρ Fermi arc length T. Yoshida et al., Experimental broadening in k-space 1/τ tr < 1/τ ARPES

Unusual metallic transport in lightly-doped cuprates Metallic resistivity well exceeds the Ioffe-Regel limit Ioffe-Regel limit k F l ~ 1 Mean-free path l is shorter than 1/k F ~ 2 A in spite of well-defined Fermi surface? Due to pseudogap/fermi arc Y. Ando et al. PRL 01

Kink due to electron-phonon interaction in hole-doped cuprates ε k ε k /(1+λ) ε k ε F ω D k F Aschcroft and Mermin, Solid State Physics A. Lanzara et al. Nature 01