Isopropyl Alcohol Vapour Removal from Diluted Gaseous Stream by Adsorption: Experimental Results and Dynamic Model

Similar documents
Biogas Clean-up and Upgrading by Adsorption on Commercial Molecular Sieves

SUPERCRITICAL CARBON DIOXIDE DESORPTION OF XYLENE FROM ZEOLITE

Adsorption of Polar and Nonpolar Vapors on Selected Adsorbents: Breakthrough Curves and their Simulation

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Investigation of Mixed Gas Sorption in Lab-Scale. Dr. Andreas Möller

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

MODELLING OF EQUILIBRIUM SORPTION OF M-XYLENE ON DAY ZEOLITE AND SUPERCRITICAL DESORPTION

Adsorption Equilibrium and Kinetics of H 2 O on Zeolite 13X

Gas Chromatography (GC)

Methods of pollution control and waste management - laboratory. Adsorptive removal of volatile organic compounds from gases streams

Adsorption (Ch 12) - mass transfer to an interface

Gas Chromatography (Chapter 2 and 3 in The essence of chromatography)

Falling Film Evaporator: Drying of Ionic Liquids with Low Thermal Stress

THE IRANIAN JAM PETROCHEMICAL S H 2 -PSA ENHANCEMENT USING A NEW STEPS SEQUENCE TABLE

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Atmospheric Analysis Gases. Sampling and analysis of gaseous compounds

Electronic Supplementary Material Experimentally Validated Mathematical Model of Analyte Uptake by Permeation Passive Samplers

Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon

Optimal Configuration of a Photocatalytic lab-reactor by using Immobilized Nanostructured TiO 2

Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor

Chromatography. Gas Chromatography

Solid-Fluid Equilibrium for the System Activated Carbon and Aqueous Solutions of Phenol under Supercritical Water Conditions

A New Batch Extractive Distillation Operational Policy for Methanol Recovery

Adsorption equilibrium and dynamics of toluene vapors onto three kinds of silica gels

Simulation and Process Integration of Clean Acetone Plant

Chemistry Gas Chromatography: Separation of Volatile Organics

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

High-Pressure Volumetric Analyzer

Adsorption dynamics and effects of carbon to zeolite ratio of layered beds for multicomponent gas adsorption

A User-Defined Pervaporation Unit Operation in AspenPlus on the Basis of Experimental Results from Three Different Organophilic Membranes

Method for the determination of 1,3-butadiene

m WILEY- ADSORBENTS: FUNDAMENTALS AND APPLICATIONS Ralph T. Yang Dwight F. Benton Professor of Chemical Engineering University of Michigan

DESORPTION OF TOLUENE FROM MODIFIED CLAYS USING SUPERCRITICAL CARBON DIOXIDE

An Alternative Way to Determine the Self-Accelerating Decomposition Temperature by Using the Adiabatic Heat- Pressure Accumulation Test

Chapter content. Reference

Indirect Series of Falling Film Distillation Column to Process Synthetic Naphtha

Be prepared to discuss the quantitative comparison method in the oral exam.

ChromTech options for PAL systems

Pressure Swing Adsorption: A Gas Separation & Purification Process

MSWI Flue Gas Two-Stage Dry Treatment: Modeling and Simulation

BET Surface Area Analysis of Nanoparticles *

Determination of effective diffusion coefficient of methane adsorption on activated carbon

Separation Benzene and Toluene from BTX using Zeolite 13X

NOTES INTRODUCTION EXPERIMENTAL

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Physicochemical Processes

Design of fixed bed adsorption columns

Error in the Estimation of Effective Diffusion Coefficients from Sorption Measurements*

Porous Solids for Biogas Upgrading

Hydraulic and Mass Transfer Performances of a Commercial Hybrid Packing: The RSP200X - Key Modelling Parameters for Gas Treatment Applications

Use of TG-DSC-MS and Gas Analyzer Data to Investigate the Reaction of CO 2 and SO 2 with Ca(OH) 2 at Low Temperature

Mechanism and Kinetics of the Synthesis of 1,7-Dibromoheptane

Steady-State and Dynamic Systems for Diffusion Parameters Determination: Advantages and Disadvantages

Evaluation of the Characteristic of Adsorption in a Double-Effect Adsorption Chiller with FAM-Z01

The dynamic adsorption of Xe on a fixed bed adsorber at 77 K

ADSORPTION OF TOLUENE VAPOUR ON ACTIVATED CARBON FIBRE

Effect of the Reaction Bath Temperature in a Fixed-bed Reactor for Oxidation of o-xylene over V 2 O 5 /TiO 2 Catalysts

Chapter 27: Gas Chromatography

Distillation of Liquids: Separation of 2-Propanol from Water by Fractional Distillation

Chemistry Instrumental Analysis Lecture 31. Chem 4631

Gas Chromatography. Introduction

Adsorption Equilibrium of Solvent Vapors on Activated Carbons

Supporting Information

SOLUBILITIES OF NON-STEROIDAL ANTI-INFLAMMATORY DRUGS IN SUPERCRITICAL CARBON DIOXIDE

BAE 820 Physical Principles of Environmental Systems

SUPERCRITICAL FLUID CHROMATOGRAPHY PROCESS OPTIMISATION OF THE SEPARATION OF TOCOPHEROL HOMOLOGUES

Fine Particles: Why We Care

Chemistry Instrumental Analysis Lecture 27. Chem 4631

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

1.0 Reactive Gas Chromatography Design and Setup Procedure for Catalyst Pelletization & Inlet Packing Software and Method.

HETEROGENEOUS CONDENSATION FOR SUBMICRONIC PARTICLE ABATEMENT: EXPERIMENTS AND MODELLING

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost

Lecture 7. Sorption-Separation Equipment

Three-dimensional Modelling of Reactive Solutes Transport in Porous Media

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes

A New Time-Temperature Indicator (TTI) Based on High-Viscosity Liquids. Marco Maschietti, Marco L. Bianchini

Single and Competitive Adsorption of Toluene and Naphthalene onto Activated Carbon

LABoratory Nanomaterials

Comparison of Conventional and Middle Vessel Batch Reactive Distillation Column: Application to Hydrolysis of Methyl Lactate to Lactic Acid

Figure 1. Pore size distribution

Supporting Information. High Selectivity of Supported Ru Catalysts in the Selective. CO Methanation - Water Makes the Difference

Vacuum Gas Carburizing with Acetylene - Gas Phase Modeling of a Bench Scale Reactor

Batch system example (previous midterm question)

CFD Simulation of Catalytic Combustion of Benzene

THEORETICAL DETERMINATION OF THE SAMPLING RATES OF DIFFUSION SAMPLERS FOR VOCS AND ALDEHYDES

Mass Transfer Rate Parameters of Sulzer EX Laboratory Scale Gauze Structured Packing

Numerical Simulation of Detritiation System for NIFS with Commercial Catalyst and Adsorbent

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

Kinetic, Thermodynamic and Regeneration Studies for CO 2 Adsorption onto Activated Carbon

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

Continuous Evaluation of Odour Concentration at a Plant Emission by Electronic Nose

Developing Carbon Tolerance Catalyst for Dry Methane Reforming

Research about the Method of Synthesizing N,N-dimethyl- 1,3-propanediamine Continuously

Experiment and Simulation Study of Multi-component Gas Adsorption On MSC3A By Volumetric method

H 3 CO H 3 CO S CH 3

High Performance Liquid Chromatography

TECHNICAL BRODIFACOUM

Compression and Expansion at the Right Pinch Temperature

Determination of Solubility Parameters using Inverse Gas Chromatography

Chapter 3: Source Measurement Techniques

Transcription:

451 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 47, 16 Guest Editors: Angelo Chianese, Luca Di Palma, Elisabetta Petrucci, Marco Stoller Copyright 16, AIDIC Servizi S.r.l., ISBN 978-88-9568-38-9; ISSN 83-916 The Italian Association of Chemical Engineering Online at www.aidic.it/cet DOI: 1.333/CET164776 Isopropyl Alcohol Vapour Removal from Diluted Gaseous Stream by Adsorption: Experimental Results and Dynamic Model Rosaria Augelletti*, Sara Frattari, Maria Cristina Annesini Dipartimento Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, I-184 Roma rosaria.augelletti@uniroma1.it The gas phase adsorption of isopropyl alcohol (IPA) onto a commercial activated carbon at 3 C was investigated under different operating conditions. Fixed-bed experiments were performed to obtain uilibrium and kinetic data for IPA adsorption. The uilibrium data were fitted by means of the Langmuir uation and isotherm parameters were determined. A dynamic, isothermal, dilute solution adsorption model, based on the linear driving force (LDF) approximation, was developed to describe the kinetic adsorption behavior. A very good agreement between experimental and model results was found when a LDF mass-transfer-rate coefficient dependent on the gas concentration was used. 1. Introduction Nowadays, in a context of growing attention for the environmental protection, there is an increasing need to reduce the emissions of harmful compounds both in gaseous and liquid effluents. Among them the volatile organic compounds (VOC) represent a very damaging class due to their harmful effects on human health and environment and their widespread use in many industrial processes (Debasish et al., 4) (Nevers, ) Various alternatives for VOC removal are available: condensation, catalytic oxidation, thermal oxidation, membrane separation and adsorption (han and Ghoshal, ). Adsorption on porous adsorbent (activated carbon, zeolite, silicalite, etc.) is the most extensively applied method, due to its high selectivity and capacity even at low VOC partial pressure. In particular, activated carbon, which can be produced by a wide variety of raw materials, is a good adsorbent able to remove several polar and non-polar components (Ruhl, 1993). However, its removal efficiency can be negatively affected by the competitive adsorption of different contaminants, gas relative humidity and slow mass transfer rate (Shim, 6). Indeed, the knowledge of the adsorption uilibrium is not enough to design an efficient adsorption unit, but a dynamic model able to predict the behavior of the adsorption column is ruired. In this work, adsorption of isopropyl alcohol (IPA) vapour onto activated carbon was investigated. IPA is a widely used solvent in industrial processes; it is also an important intermediate for pharmaceutical and cosmetic synthesis. Experimental tests were performed on fixed-bed adsorption column, using a conventional activated carbon as adsorbent material and breakthrough curves were analyzed to evaluate the adsorption uilibrium and kinetics. A simple fixed bed adsorption dynamic model, based on the linear driving force (LDF) approximation, is used to describe the column behavior.. Materials and Methods IPA was supplied from Sigma-Aldrich with a purity of 99.5 % while the activated carbon AP4-6 of cylindrical shape, purchased from Chemviron Carbon, was used as adsorbent material. The activated carbon particle had mean length and diameter of 9 and 4 mm respectively and a specific surface area of 1 m /g; in the uilibrium experiments activated carbon was crashed to reduce the particle mean size in the range of.7-1 mm. The gas composition was determined by means of gas-chromatographic analysis using an HP598 gas chromatograph, uipped with a thermal conductivity detector (TCD) and a POROPA Q 8/1 mesh packed column (SE5) of 1.83 m in length and.3 mm in diameter. The oven temperature was kept constant Please cite this article as: Augelletti R., Frattari S., Annesini M.C., 16, Isopropyl alcohol vapour removal from diluted gaseous stream by adsorption: experimental results and dynamic model, Chemical Engineering Transactions, 47, 451-456 DOI: 1.333/CET164776

45 at C, while the injector temperature and the detector temperature was set both at 5 C. The gas chromatograph was calibrated by injecting sample ( μl) of solutions of different known composition and determining the area associated to each peak. All the experiments were carried out in the linear response range of the detector. The experimental apparatus used to assess the adsorption of IPA (already used in a previous work (Gironi and Piemonte, 11) ) is reported in Figure 1: different mixture of IPA and dry air were realized injecting a fixed flow rate of liquid IPA via a dosing pump in an evaporation chamber, while the air flow rate, supplied by a gas cylinder, was kept constant; the evaporation chamber was kept at 9 C to obtain the complete vaporization of the solute. The resulting mixture was sent to the adsorption column, made of a stainless steel cylinder (1.4 cm i.d., 7 cm height) and was uipped with a thermostatic jacket in order to work with a fixed column temperature of 3 C; the adsorbent in the column was supported by a thin layer of glass wool. The outlet of the column was uipped with a six-way sampling and switching valve with a stainless steel sample loop volume ( μl); at fixed times, usually every.5 min, the exhaust stream was diverted to the gas chromatograph, where its composition was determined. The gas flow rate was controlled by mean of a volumetric gas meter placed at the exit of the gas line. Figure 1: Experimental setup: (1) solute tank; () dosing pump; (3) air cylinder; (4) evaporation chamber; (5) hot thermostatic bath; (6) adsorption column; (7) cold thermostatic bath; (8) sampling and switching valve; (9) gas meter. 3. Results and discussions 3.1 Equilibrium data and correlation The uilibrium data were obtained from breakthrough experiments at 3 C, with a constant mass of activated carbon and a constant gas flow rate. In details, the amount of adsorbed IPA per unit mass of activated carbon is obtained by means of the solute balance uation: q tb FC tb FC( t) = M ads dt (1) where C and C(t) are the inlet and outlet solute concentration respectively, F is the volumetric gas flow rate and M ads is the mass of adsorbent material used for each breakthrough experiments; in Eq(1) t B is a time sufficient to have an IPA concentration in the outlet gas ual to the influent concentration. In order to have a sharp breakthrough curve and a well-defined t B value i.e. to easier assess the adsorption capacity of the bedpowdered activated carbon was used in these experiments. Examples of breakthrough curves obtained in these experiments are reported in Figure a), while the uilibrium adsorption data are reported in Figure b).

453 Figure : a) Two IPA breakthrough curves by using powered activated carbon. b) Adsorption uilibrium data and Langmuir isotherm of IPA (T=3 C, M ads =3 g, F=.49 L/min). The uilibrium data were correlated by means of Langmuir isotherm (Langmuir, 1918): q = q c max () c 1+ and the isotherm parameters, q max and, were evaluated from the fitting of the experimental data, by means of the last square method. The parameter values obtained are reported in Figure b), where fitted curves and experimental data are compared. The figure shows that the Langmuir isotherm gives a really satisfactory correlation of the experimental data. Table 1: Operative conditions of IPA adsorption runs (T=3 C, F=.49 L/min) C M ads Bed length LDF mol/m 3 g m s -1 A.397 8 11.9.51E-4 B.363 4 6.5.34E-4 C.554 4 6.1 3.1E-4 D.963 8 11.5 5.61E-4 3. Adsorption column dynamics In order to investigate the adsorption kinetics, fixed-bed adsorption runs were performed at different inlet solute concentration and column length (see Table 1), using cylindrical pellet of activated carbon, as usually used in the industrial units. In all the experiments the outlet concentration versus time (breakthrough curves) was determined. The experimental data obtained are shown in Figure 3. Figure 3: IPA breakthrough curves (the operating conditions for A-D curves are reported in Table 1).

454 Experimental data were analyzed using a dynamic mathematical model based on the hypothesis of an axially dispersed isothermal plug-flow process with constant gas flow rate; the adsorption uilibrium is described by the Langmuir uation, while the adsorption rate into an adsorbent pellet is described using the linear driving force model with a single lumped mass transfer parameter, LDF ( Glueckauf and Coates, 1947) (Glueckauf, 1955). The fundamental uations of the model are shown in Table. The resulting set of algebraic and differential uation was solved using gproms software (PSE Enterprise, U..); while the adsorption isotherm parameters were already determined and the axial dispersion coefficient D z was evaluated from Ruthven uation (Ruthven, 1984). The LDF parameter was considered as an adjustable parameter, determined by fitting the simulations breakthrough curves to experimental data. Table : Model uations for adsorbent fixed-bed model Solute material balance Boundary conditions C q C C C C ε b + ( 1 ε b ) = DZ u uc + D = = = z + uc z z= z= z= L t t Linear driving force model Initial conditions q t = LDF ( q ( C) q) q = for z L C = for < z < L C = C for z = In details the fitting was based on the minimization of the objective function defined as φ = [ ( t, L) C ( t, L (3) C cal exp )] where C(t,L) represents the solute concentration in the gaseous effluent from the adsorption bed and the summation is over all the experimental data of each breakthrough curve. Figure 3 shows the theoretical curves obtained with the proposed model, fitting a LDF value for each curve: the figure shows that the agreement between experimental data and model results is very satisfactory for all runs. It is worth noting that the values of LDF obtained are linear function of the inlet IPA concentration C as reported in Figure 4, where the results of the regression is also reported. Figure 4: Mass transfer coefficient vs inlet IPA concentration for the different experimental runs This trend agrees with the theoretical relation proposed by Farooq and Ruthven (Farooq and Ruthven, 199) simplified to consider only the mass transfer resistance in the macropore

8ε D p p LDF = (4) Rp 455 where ε p is the particle void fraction, D p is the macropore diffusivity, R p is the particle radius and =q /C. Indeed, if the adsorption isotherm is described by Langmuir isotherm, the uilibrium constant becomes q 1 C 1+ max = (5) and by substituting Eq(5) in Eq(4), LDF becomes LDF 8ε D 8ε D p p p p = C + (6) Rpqmax Rp qmax Eq(6) suggests a linear relation between LDF mass transfer coefficient and the inlet solute concentration, as determined in our experiments. It is also worth noting that the ratio between the slope and the intercept of the regression curve (.486 mol/m 3 ) is actually very close to the value of the Langmuir constant. This value is indicative of the goodness of the findings regarding both uilibrium and kinetic adsorption of IPA onto the activated carbon in the experimental conditions chosen in this work. 4. Conclusions In the present work experimental and theoretical study on the adsorption process of air streams containing IPA in fixed-bed columns are reported. Breakthrough experiments on activated carbon were carried out in order to obtain information on uilibrium and kinetic conditions. A quite simple model, able to describe the dynamic behavior of the column, was developed on the linear driving force approximation to take into account the IPA adsorption ratio on the carbon pellet. A very good agreement between experimental and numerical results was found by using the LDF coefficient as an adjustable value for each experimental runs. A linear trend between LDF values and inlet solute concentration was found; this result can be supported by theoretical considerations based on the non-linearity of the Langmuir isotherm used to describe the uilibrium data and on the hypothesis of diffusive transport in macropores as mass transfer controlling resistance. The model has been proved to be suitable to describe the adsorption column behavior in classical breakthrough tests, but it can be used also to evaluate the efficiency of an adsorption-based treatment process in more complex conditions, when gaseous effluent containing different VOCs and/or a time variable VOC content are to be treated. Acknowledgments The authors thank Mr. Claudio Capparucci and Professor Fausto Gironi for their valuable scientific and technical contribution in the realization of this work. Nomenclature C IPA gas concentration q uilibrium amount adsorbed C IPA uilibrium gas concentration average amount adsorbed C IPA feed gas concentration q max Langmuir isotherm parameter D p macropore diffusivity R p particle radius D z axial dispersion coefficient t time uilibrium constant t B breakthrough time Langmuir isotherm parameter u superficial gas velocity LDF LDF mass transfer coefficient z axial coordinate in the bed L bed length ɛ b bed void fraction M ads mass of adsorbent ɛ p particle void fraction

456 Reference Debasish D., Vivekanand G., Nishith V., 4, Removal of volatile organic compound by activated carbon fiber, Carbon, 4, 949-96. Farooq S., Ruthven D. M., 199, Heat effects in adsorption column dynamics.. Experimental validation of the one-dimensional model, Industrial and Engineering Chemistry Research, 184-19. Gironi F., Piemonte V., 11, VOCs removal from dilute vapour streams by adsorption onto activated carbon, Chemical Engineering Journal, 17, 671-677. Glueckauf E., Coates J., 1947, Theory of chromatography. Part III. Experimental separation of two solute and comparison with theory, Journal of Chemical Society, 138-1314, DOI: 1.139/JR947138 Glueckauf E., 1955, Theory of chromatography. Part 1. Formulӕ for diffusion into spheres and their application to chromatography, Transactions of the Faraday Society, 51, 154-1551, DOI: 1.139/TF95551154 han F. I., Ghoshal A..,, Removal of Volatile Organic Compounds from polluted air, Journal of Loss Prevention in the Process Industries, 13, 57-545. Langmuir I., 1918, The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 4, 1361-143. Nevers N.,, Air pollution control engineering. Mc-Graw-Hill, Singapore. Ruhl M. J., 1993, Recover VOCs via adsorption on activated carbon, Chemical Engineering Progress, 37-41. Ruthven D. M., 1984, Principles of adsorption and adsorption processes, John Wiley and Sons. Shim W. G., Lee J. W., Moon H., 6, Adsorption uilibrium and column dynamics of VOCs on MCM-48 depending on pelletizing pressure, Microporous and Mesoporous Materials, 88, 11-15.