NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Similar documents
Simple examples of MHD equilibria

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

Introduction. Learning Objectives. On completion of this chapter you will be able to:

Section A 01. (12 M) (s 2 s 3 ) = 313 s 2 = s 1, h 3 = h 4 (s 1 s 3 ) = kj/kgk. = kj/kgk. 313 (s 3 s 4f ) = ln

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Fluid Dynamics Exercises and questions for the course

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models

ANALYTICAL SOLUTION TO EDDY CURRENT TESTING OF CYLINDRICAL PROBLEMS WITH VARYING PROPERTIES

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

Overview of FRC-related modeling (July 2014-present)

Particle Transport and Density Gradient Scale Lengths in the Edge Pedestal

MHD turbulence in the solar corona and solar wind

Ion plateau transport near the tokamak magnetic axis. Abstract

Low Temperature Plasma Technology Laboratory

Axial symmetric open magnetic traps with depressed transversal losses of plasmas

THE TOROIDAL HELICON EXPERIMENT AT IPR

Stopping, blooming, and straggling of directed energetic electrons in hydrogenic and arbitrary-z plasmas

Problem Set 4: Whither, thou turbid wave SOLUTIONS

MA3D1 Fluid Dynamics Support Class 5 - Shear Flows and Blunt Bodies

Plane electromagnetic waves and Gaussian beams (Lecture 17)

The Vorticity Equation in a Rotating Stratified Fluid

Hartmann Flow Physics at Plasma-Insulator Boundary in the Maryland Centrifugal Experiment (MCX)

Charged particle motion in external fields

CFD Analysis and Optimization of Heat Transfer in Double Pipe Heat Exchanger with Helical-Tap Inserts at Annulus of Inner Pipe

MODIFIED ELONGATED BETATRON ACCELERATOR

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing

Physics of High Pressure Helicon Plasma and Effect of Wavenumber Spectrum

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection

ρ c (2.1) = 0 (2.3) B = 0. (2.4) E + B

Cluster fusion in a high magnetic field

Exam in Fluid Mechanics SG2214

Is plasma important? Influence molecule formation?

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES*

12. MHD Approximation.

Effects of Radiation on Unsteady Couette Flow between Two Vertical Parallel Plates with Ramped Wall Temperature

Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields

14. Energy transport.

Damping of MHD waves in the solar partially ionized plasmas

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism.

Supplementary Information

ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion. h = 6.62 x J s Energy conversion factor: 1 calorie = 4.

Creation and destruction of magnetic fields

Lecture 3 Vacuum Science and Technology

Low Temperature Plasma Technology Laboratory

Waves in plasma. Denis Gialis

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013

ADVENTURES IN TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF ELECTRONEGATIVE DISCHARGES

LECTURE 5 SUMMARY OF KEY IDEAS

MONTE CARLO SIMULATION OF RADIATION TRAPPING IN ELECTRODELESS LAMPS: A STUDY OF COLLISIONAL BROADENERS*

Microwave plasma modeling with COMSOL MULTIPHYSICS

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

Chapter 5 MAGNETIZED PLASMAS. 5.1 Introduction. 5.2 Diamagnetic current

Introduction to Plasma Physics

Section 5: Thin Film Deposition part 1 : sputtering and evaporation. Jaeger Chapter 6. EE143 Ali Javey

In this process the temperature difference across the given length of pipe can be described as:

Numerical Simulation of Fluid Flow and Heat Transfer in a Plasma Cutting Torch

K E L LY T H O M P S O N

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes

Low-field helicon discharges

Magnetically Confined Fusion: Transport in the core and in the Scrape- off Layer Bogdan Hnat

TURBULENT TRANSPORT THEORY

Sensors Plasma Diagnostics

Neoclassical transport

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Low Temperature Plasma Technology Laboratory

0 Magnetically Confined Plasma

F11AE1 1. C = ρν r r. r u z r

HEADLOSS ESTIMATION. Mekanika Fluida 1 HST

Assignment Solutions- Dual Nature. September 19

RF/Microwave Discharge Plasma for Mercury-Free Lighting

Magnetohydrodynamics (MHD) I

Validation of a DNS code for wall-bounded turbulence including finite-rate reactions and surface catalysis

ATOMIC PHYSICS PREVIOUS EAMCET QUESTIONS ENGINEERING

Prediction of Coating Thickness

Theoretical description of H 2 Eley-Rideal recombination on W(110)

Three-dimensional modeling of inductively coupled plasma torches*

Vorticity Stream function Solver in Cylindrical Coordinates

Turbulence and transport reduction with innovative plasma shapes in TCV - correlation ECE measurements and gyrokinetic simulations

UNIVERSITY OF EAST ANGLIA

Using a Microwave Interferometer to Measure Plasma Density Mentor: Prof. W. Gekelman. P. Pribyl (UCLA)

Fundamentals of Plasma Physics Transport in weakly ionized plasmas

Dimerization in a Tubular Reactor

Electron-Acoustic Wave in a Plasma

Part VIII. Interaction with Solids

Physics 505 Fall 2005 Homework Assignment #7 Solutions

Non-Equilibrium Numerical Study of a Two-Stage Microwave Electrothermal Thruster

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

7.2 Sublimation. The following assumptions are made in order to solve the problem: Sublimation Over a Flat Plate in a Parallel Flow

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

PHYSICS OF HOT DENSE PLASMAS

The ideal Maxwellian plasma

P a g e 3 6 of R e p o r t P B 4 / 0 9

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

Fluid equations, magnetohydrodynamics

ON VARIABLE LAMINAR CONVECTIVE FLOW PROPERTIES DUE TO A POROUS ROTATING DISK IN A MAGNETIC FIELD

= h. Geometrically this quantity represents the slope of the secant line connecting the points

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

Transcription:

Universidad Simón olívar Departamento de Ciencias de lo Materiales Departamento de Física Centro de Ingeniería de Superficies NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED Y MAGNETIC MIRROR IN A CYLINDRICAL REACTOR Autors: Gabriel Torrente Julio Puerta Norberto Labrador

ANTECEDENTS: First Plasma reactor designed and constructed wit a grant by FONACIT project of AlN syntesis in a termal plasma reactor Termal Plasma Reactor wit Expansion Camber

RESULTS OF ANTECEDENTS: 8.a 8.b Problem: Few Termal Carbonitridation level of Al O 3

Solution for te enancement of nitridation:. Increasing te power of te termal plasma.. Increasing te resident time of te powders in te ig termal zones of reactor. 3. Decreasing te termal energy loss of reactor. te energy cost of te process increase te energy cost of te process does not Increase Ten, it is convenient to:.design te termal plasma reactor in fluidized bed for increase te resident time.. Confine te termal plasma flow by magnetic mirror for decrease te energy loss.

New design Wall Reactor Refractory Tube Grapite tube Magnetic Coils Plasma Torc

First step NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED Y MAGNETIC MIRROR IN A CYLINDRICAL REACTOR Te numerical simulation of tis termal axisymmetry plasma jet in magnetic mirror is carried out using two-temperature model to study ow canges te electron density and te plasma flux wit te temperature, pressure and wit te applied magnetic fields. Control Volume

Governing Equation Initial Conditions u g r r A = um ra r T = T T T v g = ω = ( ) e r T Ant ( * ) g E g m m g Ant T g = E Were te cross section impact and average initial temperatura are: E * = Qp e 8me mc & e m ( ) g p T g m TA = VefIef g

oundary conditions In te Central Axel u = v = ω r = = r= r r= T r e T r = = r= r= In te reactor wall u = v = ω = r= R r= R r= R ( ) w A g Tw = T r= R T T Res T e = r= R T w

State Equation P ρrt = Continuity Equation ( rρν ) ( ρu) = r r z Momentum Conservation Equations (Navier-Stoke Equations) ( ρu ) ( rρν u ) p u ν u u ( rν) = η rη η Jrθ Jθr gρ z r r z z z r r z r 3 z r r r ( ρν u ) ( rρν ) P u u ( rν ) ν ν ν ω = η rη η η ρ Jθ z Jz z r r r z z r r r r 3 r z r r r r ( ρuω) ( rρνω) ω ω νω ω ( rη) = η rη ρ J J z r r z z r r r r r r z r r z θ

Energy Conservation Equations T T P P u v ( ρgcpgugt ) ( ρgcpgrvgt ) = K Kr ug vg η η Ee Ep z r r z z r r r z r r z 5 5 Te Te Pe Pe knut e g e knrvt e g e= Ke Kr e ug vg Ee z r r z z r r r z r Were Energy transport from te electron to plasma gas m e 3 E = n k T T m ( ν ) ( ) e e e e Collision frequency r ( V ) ei g ei ν V = V 3 4 * e 4π ne e lnλ 3 3 g me Vg

Saa Ionization Equation 3 g T e g e e m T n e n n κ π κ = Om Generalized Law r r z r z z z E E E J = σ σ σ σ θ z r z r r z r J E E E θ σ σ σ σ = r z z r E E E J = σ σ σ θ θ

Maxwell Equations E = v ω Z θ Er = ωz u θ E θ = u r v z r iot-savart Law µ NI µ NI µ NI l z cos ( ) z = Nv d Nv sen sen Nv l θ θ = θ θ = l l z R Hypotesis and Data. Pressure, Heat Capacity Gas (Cp g ), Viscosity Gas (η) and Termal Conductivity Gas (K) are constants. 3. Te dissociation energy is neglected. 4. Axial Symmetry 5. Only magnetic field in axial direction 6. Power Plasma Torc =,5 KW; mass flow= 3, lpm of Nitrogen, z max =,3 T, Ionization Energy = 5,4 ev

Pressure = atmospere (35 Pa) Results Axial velocity Profile 5 7 9 Pressure = Torr (33 Pa) U para z= U para z= 8 U para z= 36 U para z= 54 U para z= 7 U para z= 9 U para z= 8 U para z= 6 U para z= 44 8 Velocity, atm Velocity (mm/s) 7 6 5 4 3 7-8 6-7 5-6 4-5 3-4 -3 - - Axial Lengt (mm) 8 7 6 5 Velocity (mm) 4 3 Velocity, torr 9 8 U para z= U para z= 5 U para z= 3 U para z= 45 U para z= 6 U para z= 75 U para z= 9 U para z= 5 U para z= U para z= 35 U para z= 5 7-8 6-7 5-6 4-5 3-4 -3 - - Axial Lengt (mm)

9 7 5 Plasma Temperature Profile T para z= T para z= 5 T para z= 3 T para z= 45 T para z= 6 T para z= 75 T para z= 9 T para z= 5 T para z= T para z= 35 T para z= 5 6 5 4 Temperature (K) 3 Plasma Temperature, atm 5-6 4-5 3-4 -3 - - Axial Lengt (mm) 6 5 4 3 9 8 T para z= T para z= 5 T para z= 3 T para z= 45 T para z= 6 T para z= 75 T para z= 9 T para z= 5 T para z= T para z= 35 T para z= 5 Pressure = atmospere (35 Pa) Temperature (K) Plasma Temperature, torr 5-6 4-5 3-4 -3 - - Pressure = Torr (33 Pa) Axial Lengt (mm)

Electronic Temperature Profile 8 9 Te para z= Te para z= 5 Te para z= 3 Te para z= 45 Te para z= 6 Te para z= 75 Te para z= 9 Te para z= 5 Te para z= Te para z= 35 Te para z= 5 6 5 4 Electronic Temperature (K) 3 Electronic Temperatue, atm 5-6 4-5 3-4 -3 - - Axial Lengt (mm) 6 5 4 Electronic Temperature (K) 3 3 Te para z= Te para z= 5 Te para z= 3 Te para z= 45 Te para z= 6 Te para z= 75 Te para z= 9 Te para z= 5 Te para z= Te para z= 35 Te para z= 5 Pressure = atmospere (35 Pa) Pressure = Torr (33 Pa) Electronic Temperature, torr 5-6 4-5 3-4 -3 - - Axial Lengt (mm)

Density Plasma Profile 3 Dg para z= 5 Dg para z= 35 Dg para z= Dg para z= 5 Dg para z= 9 Dg para z= 75 Dg para z= 6 Dg para z= 45 Dg para z= 3 Dg para z= 5 Dg para z=,4e-,e-,e- Gas Density (g/mm3) 8,E- 6,E- 4,E-,E- Plasma Density, atm,e--,4e-,e--,e- 8,E--,E- 6,E--8,E- 4,E--6,E-,E--4,E-,E-,E-,E Axial Lengt (mm),6e-3,4e-3,e-3 Density gas (g/mm3),e-3 8,E-4 6,E-4 4,E-4,E-4 3 Dg para z= 44 Dg para z= 3 Dg para z= Dg para z= 8 Dg para z= 96 Dg para z= 84 Dg para z= 7 Dg para z= 6 Dg para z= 48 Dg para z= 36 Dg para z= 4 Dg para z= Dg para z= Pressure = atmospere (35 Pa) Pressure = Torr (33 Pa) Density Gas, torr,e,4e-3-,6e-3,e-3-,4e-3,e-3-,e-3 8,E-4-,E-3 6,E-4-8,E-4 4,E-4-6,E-4 Axial Lengt (mm),e-4-4,e-4,e-,e-4

9,E8 8,E8 Electronic Density Profile 7,E8 6,E8 Electronic Density (#e/mm3) 5,E8 4,E8 3,E8 Electronic Density, atm,e8,e8,e 8-9 7-8 6-7 5-6 4-5 3-4 -3 - - De para z= 3 De para z= 8 De para z= 33 Axial Lengt (mm) De para z= 48 De para z= 63 De para z= 78 De para z= 93 De para z= 8 De para z= 3 De para z= 38 5 9 7 3,5E7 3,E7 Pressure = Torr (33 Pa) Pressure = atmospere (35 Pa) Electronic Density (#e/mm3),5e7,e7,5e7,e7 5,E6 Electronic Density, torr 3-35 5-3 -5 5- -5 5- -5,E De para z= 3 De para z= 8 De para z= 33 Axial Lengt (mm) De para z= 48 De para z= 63 De para z= 78 De para z= 93 De para z= 8 De para z= 3 De para z= 38 3

3 Z ionization Profile Zion para z= 3 Zion para z= 8 Zion para z= 33 Zion para z= 48 Zion para z= 63 Zion para z= 78 Zion para z= 93 Zion para z= 8 Zion para z= 3 Zion para z= 38 4,E-6 3,5E-6 3,E-6,5E-6 Ionization,E-6,5E-6,E-6 5,E-7 Ionization, atm 3,5E-6-4,E-6 3,E-6-3,5E-6,5E-6-3,E-6,E-6-,5E-6,5E-6-,E-6,E-6-,5E-6 5,E-7-,E-6,E-5,E-7,E Axial Lengt (mm) 3 Zion para z= 3 Zion para z= 8 Zion para z= 33 Zion para z= 48 Zion para z= 63 Zion para z= 78 Zion para z= 93 Zion para z= 8 Zion para z= 3 Zion para z= 38 Pressure = atmospere (35 Pa),E-4,E-4 8,E-5 Ionization 6,E-5 4,E-5,E-5,E Ionization, torr,e-4-,e-4 8,E-5-,E-4 6,E-5-8,E-5 4,E-5-6,E-5,E-5-4,E-5 Axial Lengt (mm),e-,e-5 Pressure = Torr (33 Pa)

,5E-5,E-5 Ionization,5E-5,E-5 5,E-6 Plasma Torc 5 mm,e 3 3 43 63 83 3 3 43 63 Axial Lengt (mm) Average Z ionization Average Z (atm) Average Z ( torr)

Conclusions Te axial velocity as few canged wit te pressure. Te Plasma Temperature as few canged wit te pressure. Te electronic temperature as few increasing wit te vacuum Te Plasma and Electronic densities decreases wit te vacuum. Z ionization increases wit te vacuum.