Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO(10) Grand Unified Models

Similar documents
arxiv: v1 [hep-ph] 24 Feb 2015

E 6 Spectra at the TeV Scale

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

SM predicts massless neutrinos

Testing leptogenesis at the LHC

Minimal SUSY SU(5) GUT in High- scale SUSY

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

The Standard Model of particle physics and beyond

Neutrino masses : beyond d=5 tree-level operators

How high could SUSY go?

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

125 GeV Higgs Boson and Gauge Higgs Unification

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

Majoron as the QCD axion in a radiative seesaw model

Wino dark matter breaks the siege

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

Probing the Majorana nature in radiative seesaw models at collider experiments

Proton Decay and Flavor Violating Thresholds in the SO(10) Models

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy

Kaluza-Klein Dark Matter

Flavor violating Z from

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

The Matter-Antimatter Asymmetry and New Interactions

Effective Theory for Electroweak Doublet Dark Matter

Lecture 18 - Beyond the Standard Model

arxiv:hep-ph/ v1 5 Oct 2005

U(1) Gauge Extensions of the Standard Model

Little Higgs Models Theory & Phenomenology

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

The Yang and Yin of Neutrinos

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Neutrino masses respecting string constraints

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

The Standard Model and beyond

Neutrino Mass Seesaw, Baryogenesis and LHC

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Non-Abelian SU(2) H and Two-Higgs Doublets

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

Left-Right Symmetric Models with Peccei-Quinn Symmetry

The first one second of the early universe and physics beyond the Standard Model

Higgs Mass Bounds in the Light of Neutrino Oscillation

TeV Scale Seesaw with Loop Induced

The Standard Model and Beyond

A Novel and Simple Discrete Symmetry for Non-zero θ 13

Topological Defects, Gravity Waves and Proton Decay

P, C and Strong CP in Left-Right Supersymmetric Models

Searching for sneutrinos at the bottom of the MSSM spectrum

Exploring Universal Extra-Dimensions at the LHC

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements.

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

COSMOLOGICAL CONSTRAINTS ON HEAVY WEAKLY INTERACTING FERMIONS

Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector

NO GUTS, ALL GLORY: CHARGE QUANTIZATION. John Kehayias Kavli IPMU (WPI) The University of Tokyo SUSY 2013 Trieste, Italy August 26 31

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL

Searches for Beyond SM Physics with ATLAS and CMS

Proton decay theory review

Duality in left-right symmetric seesaw

SUSY GUTs, DM and the LHC

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Spontaneous Parity Violation in a Supersymmetric Left-Right Symmetric Model. Abstract

Neutrinos as Pathfinders

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

SUPERSYMETRY FOR ASTROPHYSICISTS

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Theoretical Particle Physics Yonsei Univ.

Constraining minimal U(1) B L model from dark matter observations

The Story of Wino Dark matter

Z -portal right-handed neutrino dark ma4er in the minimal U(1)x extended Standard Model

arxiv:astro-ph/ v4 5 Jun 2006

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

Yang-Hwan Ahn Based on arxiv:

Phenomenology of low-energy flavour models: rare processes and dark matter

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Origin of Mass of the Higgs Boson

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Crosschecks for Unification

A String Model for Preons and the Standard Model Particles. Abstract

Probing Seesaw and Leptonic CPV

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Grand Unified Theory based on the SU(6) symmetry

Supersymmetric Seesaws

Neutrinos, GUTs, and the Early Universe

Introduction to Supersymmetry

The Origin of Matter

SUSY Phenomenology & Experimental searches

arxiv:hep-ph/ v1 24 Feb 2003

A NOTE ON R-PARITY VIOLATION AND FERMION MASSES. GÓMEZ and K. TAMVAKIS. Division of Theoretical Physics, University of Ioannina, GR-45110, Greece

arxiv:hep-ph/ v2 19 Sep 2005

The Super-little Higgs

Transcription:

Dark Ma'er and Gauge Coupling Unifica6on in Non- SUSY SO() Grand Unified Models Natsumi Nagata Univ. of Minnesota/Kavli IPMU PANCK 2015 May 25-29, 2015 Ioannina, Greece Based on Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015) [arxiv:1502.06929].

Evidence for Dark Ma'er (DM) GalacUc scale Scale of galaxy clusters Cosmological scale D [µk 2 ] 6000 5000 4000 3000 2000 00 90 18 Angular scale 1 0.2 0.1 0.07 Begeman et. al. (1991) Clowe et. al. (2006) 0 2 50 500 00 1500 2000 2500 Multipole moment, Planck (2013)

Stability of DM DM parucle should be stable or have a lifeume longer than the age of the Universe. Example Discrete symmetry Z N R- parity in supersymmetric models KK- parity in the universal extra- dimensional models etc. Introducing a discrete symmetry by hand? Is there any mechanism for the symmetry?

Discrete symmetry as a remnant U(1) Suppose that there is a U(1) gauge symmetry: Field φ i φ H Charge Q i Q H Higgs field which breaks the extra U(1) symmetry Q H 0 (mod. N) Aeer the Higgs field φ H gefng a VEV, both the agrangian and the VEV are invariant under the following transformauons: There remains a Z N symmetry! U(1) φ H Z N T. W. B. Kibble, G. azarides and Q. Shafi (1982). M. Krauss and F. Wilczek (1989). E. Ibanez and G. G. Ross (1991) S. P. MarUn (1992)

SO() GUT SM gauge symmetries + an addiuonal U(1) Rank 5 SO() GUT H. Georgi (1975) H. Fritzsch and P. Minkowski (1975) In fact, non- SUSY SO() GUT is quite promising. SM fermions + right- handed neutrinos are embedded into 16. Gauge coupling unificauon is realized with an intermediate gauge symmetry. SO() G int G SM M GUT M int Small neutrino masses are explained by heavy right- handed neutrinos. M int M R M int

Discrete symmetry in SO() In non- SUSY SO() GUTs, the extra U(1) is broken at M int By appropriately choosing the intermediate Higgs field, we can obtain SO() G int G SM Z N Group analysis M. De MonUgny and M. Masip (1994) Higgs 126 672 Symmetry Z 2 Z 3 Equivalent to maser parity SO() contains U(1) B- If we focus on rather small representauons, Z 2 is the only possibility. SO() can explain the stability of DM! M. KadasUk, K. Kannike and M. Raidal (2009) M. Frigerio and T. Hambye (2009)

Our work Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015). We systemaucally examine DM in SO() GUT models. Construct SO() models which realize gauge coupling unificauon with an appropriate GUT scale. Two classes of DM candidates Non- equilibrium thermal DM (NETDM) WIMP DM Study the phenomenological consequences of our models DM relic abundance Proton decay lifeume Neutrino mass DM muluplet affects the gauge coupling running

Our work Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015). We systemaucally examine DM in SO() GUT models. Construct SO() models which realize gauge coupling unificauon with an appropriate GUT scale. Two classes of DM candidates Non- equilibrium thermal DM (NETDM) DM muluplet affects the gauge coupling running WIMP DM (in progress) Study the phenomenological consequences of our models DM relic abundance Proton decay lifeume Neutrino mass

Non- equilibrium thermal DM (NETDM) Y. Mambrini, K. A. Olive, J. Quevillon, B. Zaldivar (2013). SM singlet fermion DM Does not come into thermal equilibrium Non- thermally produced via heavy parucle exchange SM parucles DM Thermal bath Heavy parucles We can use intermediate- scale parucles as a mediator!

Setup SO() GUT- scale parucles M GUT M int G int Broken by 126 Right- handed neutrinos Intermediate parucles T R G SM Z 2 DM EW SM parucles Mass spectrum is obtained with fine- tuning. Just like doublet- triplet splifng

Models Model I Model II G int SU(4) C SU(2) SU(2) R SU(4) C SU(2) SU(2) R D R DM (1, 1, 3) D in 45 D (15, 1, 1) W in 45 W R 1 2 R 54 R R 2 (, 1, 3) C (1, 1, 3) R (, 1, 3) C (, 3, 1) C (15, 1, 1) R log (M int ) 8.08(1) 13.664(5) log (M GUT ) 15.645(7) 15.87(2) g GUT 0.53055(3) 0.5675(2) We have obtained two promising models! R DM : DM muluplet R 1 : GUT- scale Higgs R 2 : intermediate Higgs D : ee- right parity (, 1, 3) C 126 Other Higgs fields make only the DM field light. Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015).

Gauge coupling unifica6on Model I Model II We use 2- loop RGEs. W/ DM W/O DM Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015).

Proton Decay W/ DM W/O DM Model I Model II M X : mass of GUT- scale gauge boson Future proton decay experiments can probe the models. Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015).

Neutrino mass Neutrino masses are given by the seesaw mechanism. P. Minkowski (1977), T. Yanagida (1979) M. Gell- Mann, P. Ramond, R. Slansky (1979) S.. Glashow (1980) R. N. Mohapatra and G. Senjanovic (1980) Model I Model II Model I is disfavored on the basis of small neutrino masses. Possible soluuon IntroducUon of (15, 2, 2) Higgs field to modify the neutrino Dirac mass. Scarcely affects the gauge coupling running

Non- equilibrium thermal DM (NETDM) SM#par'cles Model I DM h ψ 0 f ψ 0 φ +,W + R ψ + γ,z φ 0,WR 0, ψ + φ +,W + R h ψ 0 f ψ 0 Thermal#bath Heavy#par'cles Model II Boltzmann equauon h φ 0 ψ 0 h φ ψ 0 DM relic abundance is given as a funcuon of DM mass M DM and the reheaung temperature T RH.

DM relic abundance Model I Model II Model I predicts low reheaung temperature T RH in Model II is relauvely high challenging for baryogengesis Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, J. Zheng, Phys. Rev. D91, 0950 (2015).

Conclusion We discuss SM singlet fermion DM candidates in SO(). Stability of DM is explained in terms of a remnant Z 2. Such DM parucles are produced via the exchange of intermediate parucles (NETDM scenario). We have found two promising models. Gauge coupling unificauon is achieved in the models. We computed reheaung temperature which realizes the correct DM density. Future proton decay experiments can probe the models.

Backup

Discrete symmetry in SO() Table 1: Irreducible representations containing µ N. Representation Highest weight Z 2 µ 0 45 (0 1 0 0 0) + 54 (2 0 0 0 0) + 2 (0 0 0 1 1) + µ 1 16 (0 0 0 0 1) 144 (1 0 0 1 0) µ 2 126 (0 0 0 0 2) + Generic expression for a weight that is singlet under G SM. µ N =( NN N 0 N) A VEV of μ N yields Z N symmetry

Candidates for intermediate gauge group Table 2: Candidates for the intermediate gauge group G int. G int R 1 SU(4) C SU(2) SU(2) R 2 SU(4) C SU(2) SU(2) R D 54 SU(4) C SU(2) U(1) R 45 SU(3) C SU(2) SU(2) R U(1) B 45 SU(3) C SU(2) SU(2) R U(1) B D 2 SU(3) C SU(2) U(1) R U(1) B 45, 2 SU(5) U(1) 45, 2 Flipped SU(5) U(1) 45, 2

Candidates for NETDM Table 3: Candidates for the NETDM. G int R DM SO() SU(4) C SU(2) SU(2) R (1, 1, 3) 45 (15, 1, 1) 45, 2 (, 1, 3) 126 (15, 1, 3) 2 SU(4) C SU(2) U(1) R (15, 1, 0) 45, 2 (, 1, 1) 126 SU(3) C SU(2) SU(2) R U(1) B (1, 1, 3, 0) 45, 2 (1, 1, 3, 2) 126 SU(3) C SU(2) U(1) R U(1) B (1, 1, 1, 2) 126 SU(5) U(1) (24, 0) 45, 54, 2 (1, ) 126 (75, 0) 2 Flipped SU(5) U(1) (24, 0) 45, 54, 2 (50, 2) 126 (75, 0) 2 SM fermion DM SM Higgs SM fermions: Z 2 - odd SM Higgs: Z 2 - even DM should be Z 2 - even

Gauge coupling unifica6on without DM Table 4: log (M int ), log (M GUT ), and g GUT. For each G int, the upper shaded (lower) row shows the 2-loop (1-loop) result. M int and M GUT are given in GeV. The blank entries indicate that gauge coupling unification is not achieved. G int log (M int ) log (M GUT ) g GUT SU(4) C SU(2) SU(2) R 11.17(1) 15.929(4) 0.52738(4) 11.740(8) 16.07(2) 0.5241(1) SU(4) C SU(2) SU(2) R D 13.664(3) 14.95(1) 0.5559(1) 13.708(7) 15.23(3) 0.5520(1) SU(4) C SU(2) U(1) R 11.35(2) 14.42(1) 0.5359(1) 11.23(1) 14.638(8) 0.53227(7) SU(3) C SU(2) SU(2) R U(1) B 9.46(2) 16.20(2) 0.52612(8) 8.993(3) 16.68(4) 0.52124(3) SU(3) C SU(2) SU(2) R U(1) B D.51(1) 15.38(2) 0.53880(3).090(9) 15.77(1) 0.53478(6) SU(3) C SU(2) U(1) R U(1) B

Gauge coupling unifica6on without DM 16 14 12 SU(4) SU(2) SU(2) C R 1 loop 2 loops 16 14 12 11.22 11.2 SU(4) SU(2) SU(2) C R 13.68 13.675 SU(4) SU(2) SU(2) D C R 2 χ 8 2 χ 8 M int 11.18 M int 13.67 13.665 6 6 log 11.16 log 13.66 4 2 0 11.2 11.4 11.6 11.8 M int log 4 2 0 13.66 13.68 13.7 13.72 M int log 1 loop 2 loops SU(4) SU(2) SU(2) D C R 11.14 11.12 Best fit point 68% C 95% C 99% C 0.527 0.5272 0.5274 0.5276 0.5278 g GUT 13.655 13.65 13.645 Best fit point 68% C 95% C 99% C 0.5558 0.556 0.5562 g GUT 2 χ 16 14 12 8 6 4 2 log 1 loop 2 loops SU(4) SU(2) SU(2) C R 0 15.9 15.95 16 16.05 16.1 M GUT 2 χ 16 14 12 8 6 4 2 0 SU(4) SU(2) SU(2) D C R 15 15.1 15.2 M GUT log 1 loop 2 loops M GUT log 16 15.98 15.96 15.94 15.92 15.9 15.88 15.86 Best fit point 68% C 95% C 99% C SU(4) SU(2) SU(2) C R 0.527 0.5272 0.5274 0.5276 0.5278 g GUT M GUT log 15 14.98 14.96 14.94 14.92 14.9 SU(4) SU(2) SU(2) D C R Best fit point 68% C 95% C 99% C 0.5558 0.556 0.5562 g GUT 2 χ 16 14 12 8 SU(4) SU(2) SU(2) C R 1 loop 2 loops 2 χ 16 14 12 8 SU(4) SU(2) SU(2) D C R 1 loop 2 loops M int log 11.22 11.2 11.18 11.16 SU(4) SU(2) SU(2) C R M int log 13.68 13.675 13.67 13.665 13.66 SU(4) SU(2) SU(2) D C R 6 4 2 0 0.524 0.525 0.526 0.527 g GUT 6 4 2 0 0.552 0.553 0.554 0.555 0.556 g GUT 11.14 11.12 Best fit point 68% C 95% C 99% C 15.85 15.9 15.95 16 M GUT log 13.655 13.65 13.645 14.9 14.95 15 M GUT log Best fit point 68% C 95% C 99% C Figure 3: Contour plots for the allowed region in the g GUT -log (M int ), g GUT -log (M GUT ), and log (M GUT )-log (M int ) parameter planes in the top, middle, and bottom panels, respectively. eft panels are for G int = SU(4) C SU(2) SU(2) R, while right ones are for G int = SU(4) C SU(2) SU(2) R D. Stars represent the best-fit point. The colored regions correspond to 68, 95, and 99 % C.. limits determined from 2 ' 2.30, 5.99, 9.21.

Gauge coupling unifica6on with DM Table 5: Models that realize the gauge coupling unification. M int and M GUT are given in GeV. All of the values listed here are evaluated at one-loop level. SU(4) C SU(2) SU(2) R R DM R 2 log (M int ) log (M GUT ) g GUT (1, 1, 3) W (, 1, 3) C (1, 1, 3) R.8 15.9 0.53 (1, 1, 3) D (, 1, 3) C (1, 1, 3) R 9.8 15.7 0.53 SU(4) C SU(2) SU(2) R D R DM R 2 log (M int ) log (M GUT ) g GUT (15, 1, 1) W (, 3, 1) C (15, 1, 1) R 13.7 16.2 0.56 (, 1, 3) C (, 1, 3) C (, 3, 1) C (15, 1, 1) W (15, 1, 3) R (15, 3, 1) R 14.2 15.5 0.56 (, 1, 3) C (, 3, 1) C (15, 1, 1) D (15, 1, 3) R (15, 3, 1) R 14.4 16.3 0.58 SU(3) C SU(2) SU(2) R U(1) B R DM R 2 log (M int ) log (M GUT ) g GUT (1, 1, 3, 0) W (1, 1, 3, 2) C (1, 1, 3, 0) R 6.1 16.6 0.52