Magnetic Force and Current Balance

Similar documents
Coulomb s Law and Coulomb s Constant

Pre-lab Quiz/PHYS 224 Coulomb s Law and Coulomb Constant. Your name Lab section

Current Balance Warm Up

Physical Pendulum, Torsion Pendulum

Coulomb s Law PHYS 296

Electric Field and Electric Potential (A)

UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS. Level 1: Experiment 2E THE CURRENT BALANCE

Chapter 12. Magnetism and Electromagnetism

vv d of the electrons. As a result, there is a net current in

Experiment 19: The Current Balance

Exam 2 Fall 2015

Simple Harmonic Motion

Free-Fall Acceleration

Acceleration due to Gravity

Coulomb s Law. Coloumb s law Appratus Assembly

Introduction to Electrical Theory and DC Circuits

The force on a straight current-carrying conductor in a magnetic field is given by,

Laboratory 14: Ratio of Charge to Mass for the Electron

Experiment 4: Charge to mass ratio (e/m) of the electron

Elastic light scattering

THE SCREW GAUGE. AIM: To learn to use a Screw Gauge and hence use it to find the dimensions of various regular materials given.

SPH 4U: Unit 3 - Electric and Magnetic Fields

τ = (Force)(lever arm) #

Pre-Lab Quiz / PHYS 224. R-C Circuits. Your Name Lab Section

Simple Harmonic Motion

AP Physics Electromagnetic Wrap Up

Coulomb s Law. Equipment list Qty Item Part Number 1 Coulomb Balance ES Voltage Suppy. Purpose

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

Test Review Electricity

Waves Final Review. Name: Date: 1. On which one of the following graphs is the wavelength λ and the amplitude a of a wave correctly represented?

Torques and Static Equilibrium

(D) Blv/R Counterclockwise

Angular Momentum. 1. Object. 2. Apparatus. 3. Theory

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1112, Exam 2 Section 1 Version 1 April 2, 2013 Total Weight: 100 points

Quantum Mechanics. An essential theory to understand properties of matter and light. Chemical Electronic Magnetic Thermal Optical Etc.

8-Aug-10 PHYS Electric Field Mapping. Objective To map the equipotential lines and construct electric field line between two charged objects.

Physics 2135 Exam 3 November 18, 2014

Practice Final C. 1. The diagram below shows a worker using a rope to pull a cart.

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich

Rotational Motion. Chapter 10 of Essential University Physics, Richard Wolfson, 3 rd Edition

Chapter 8. Centripetal Force and The Law of Gravity

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section

1. If the mass of a simple pendulum is doubled but its length remains constant, its period is multiplied by a factor of

Charge carrier density in metals and semiconductors

Physics 2135 Exam 3 April 18, 2017

Physical Pendulum Torsion Pendulum

Unit 3: Gravitational, Electric and Magnetic Fields Unit Test

Measuring the Universal Gravitational Constant, G

Class XII- Physics - Assignment Topic: - Magnetic Effect of Current

Potential and Kinetic Energy

THE SCREW GAUGE. AIM: To learn to use a Screw Gauge and hence use it to find the dimensions of various regular materials given.

Hall probe, Magnetic Field and Forces


Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION

THE CAVENDISH EXPERIMENT Physics 258/259

Physics 111 The Coulomb Balance

AP Physics C Mechanics Objectives

Solving Physics Problems

CHARGED PARTICLES IN FIELDS

Lecture 2: Plasma particles with E and B fields

Charge to Mass Ratio of The Electron

Al-Saudia Virtual Academy Pakistan Online Tuition Online Tutor Pakistan

Physics 2210 Fall smartphysics Rotational Statics 11/18/2015

A) 0 V B) 0.4 V C) 2.5 V D) 10 V E) 40 V A) 0. B) vbl 2. C) vbl 2. D) vbl. E) vbl

CHARGE TO MASS RATIO FOR THE ELECTRON

Physics 6A Lab Experiment 6

The Cavendish Experiment

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

March 11. Physics 272. Spring Prof. Philip von Doetinchem

Helmholtz Galvanometer

Chapter 10. Electrostatics

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect

Lab 5. Current Balance

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

This lab was adapted from Kwantlen University College s Determination of e/m lab.

Charge to Mass Ratio of The Electron

Physics 2212 K Quiz #1 Solutions Summer 2015

Secondary 3H Unit = 1 = 7. Lesson 3.3 Worksheet. Simplify: Lesson 3.6 Worksheet

CLASS XII WB SET A PHYSICS

The e/m Ratio of the Electron

Laser Lab Finding Young s Modulus

Torque and Rotational Equilibrium

Physics 141 Second Mid-Term Examination Spring 2015 March 31, 2015

PH 102 Exam I N N N N. 3. Which of the following is true for the electric force and not true for the gravitational force?

Lab 8: Magnetic Fields

CLASS X- ELECTRICITY

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Equation Sheet, Phys 1321 (Exam II), University of Houston, Fall 2016 Instructor: Dr. W. P. Su

Gravitation. Chapter 8 of Essential University Physics, Richard Wolfson, 3 rd Edition

Phys 132: Supplementary Exercises

Electric & Magnetic Fields

Summer AP Assignment 2016

Chapter 22, Magnetism. Magnets

Quantum state measurement

PHY 221 Lab 7 Work and Energy

Semester I lab quiz Study Guide (Mechanics) Physics 135/163

2R R R 2R. Phys Test 1

Magnetism 2. D. the charge moves at right angles to the lines of the magnetic field. (1)

Transcription:

Pre-Lab Quiz / PHYS 224 Magnetic Force and Current Balance Name Lab Section 1. What do you investigate in this lab? 2. Consider two parallel straight wires carrying electric current in opposite directions with the same magnitude of 2.0 A. The center-tocenter distance between the two wires is 5.0 mm. One wire is infinitively long and the other wire is 0.30 m long. Is the magnetic force between the two wires repulsive or attractive? What is the magnitude of the magnetic force between them? (Answer: FF = 4.8 10 5 NN) 3. What mass on the Earth surface will experience a gravitational force with the same magnitude as the above magnetic force? (Answer: mm = 4.90 mmmm) 1

Instructor s Lab Manual / PHYS 224 Magnetic Force and Current Balance Name Lab Section Objective In this lab you will investigate magnetic force between two parallel current-carrying wires and will measure the fundamental constant μμ 0, the permeability in free space. Background (a) Magnetic force (also known as the Lorentz force) on a moving charge: When a charge qq moves with velocity vv in a magnetic field BB, it experiences a magnetic force, FF, which is perpendicular to both vv and BB. If vv is perpendicular to BB, the magnitude of the magnetic force is given by: FF = qq vv BB. (1) (b) Magnetic field generated by a current-carrying wire: The Figure on the right displays the magnetic field generated by an infinitely long straight wire carrying electric current of magnitude II. At a distance rr from the wire, the magnetic field generated by the current has a magnitude: 2

BB(rr) = μμ 0 II 2 ππ rr, (2) where μμ 0 is the permeability of the free space, μμ 0 = 4 ππ 10 7 TT mm/aa. The direction of the magnetic field is perpendicular to the direction of the current and obeys the right-hand rule, as depicted in the Figure. (C) Magnetic force between two parallel current-carrying wires: Consider two parallel, straight, and long wires (1 & 2), separated by distance dd and both carrying an electric current II. As discussed in (a), the electric current in wire 1 generates a magnetic field on wire 2 which is perpendicular to wire 2 and has a magnitude of BB(dd) = μμ 0 II. 2 ππ dd Because of the current in wire 2, the conduction charges in wire 2 move along the wire and have a drift velocity, which is perpendicular to the magnetic field generated by wire 1. Thus, the conduction electrons in wire 2 experience a magnetic force. The magnetic force induced by wire 1 on a segment of wire 2 of length L is the sum of the magnetic forces on all the conduction charges in the segment of wire 2. It is given by FF = IIII μμ 0 II 2 ππ dd = μμ 0 LL II 2 2 ππ dd. (3) The magnetic force is attractive when the electric currents in the two wires run in the same direction; the magnetic force is repulsive when the electric currents in the two wires run in the opposite directions. The S.I. units for the relevant physical quantities in Equation (3) are: F in Newton (N), d and L in meter (m), I in Ampere (A). 3

EXPERIMENT Apparatus The main part of the set-up used in this lab is shown in Figure 1. Wire AB is a conducting rod and is fixed on the board of the current balance. The vertical position of wire AB is thus fixed. Wire CD is also a conducting rod and is part of the frame KCDK. Except for a plastic rod connected between K and K, the rest part of the frame is metallic and thus conducting. The frame has two supporting knife edges (not shown): one under K and the other under K. The frame is supported only by the two knife edges which are placed on the two short parallel brass supporting beams on the board. It can thus rotate freely around the line connecting the two knife edges, allowing wire CD to move away from or towards wire AB. First, adjust the knife edges until wire AB and wire CD directly face each other. As described in the Coulomb Balance, the frame is balanced mainly by the frame and weight P, and secondary by weight P (located under Rod KK ). By rotating it, weight P can move along the attached rod to change its lever arm. Weight P, which can slide up and down (by rotating) to change its lever arm, is used to change the 4

time period of oscillation of the frame and to equilibrate the frame. Metallic pane Q is placed between two horseshoe magnets and is used to damp oscillation of the frame. Make sure that pane Q does not touch these magnets. Note: for small-angle rotation, the position of weight P is important for efficiently stopping oscillation of the frame and to increase the sensitivity of the experiment. After adjusting P and P, the frame should be able to rotate freely around the line connecting the two knife edges but its oscillation is efficiently damped; wire AB and wire CD are aligned parallel with each other, with wire CD above Wire AB, and separated by only a few millimeters. Measure the distance (d) between the central axes of rod AB and rod CD: To accurately measure the center-to-center distance, d, between rod AB and rod CD you will use a laser, a mirror, and a scale. As shown in Figure 1, the mirror is fixed on a vertical frame attached to the horizontal rod KK. Rod CD is perpendicular to the mirror and rod KK is parallel with both rod CD and the mirror. If D 1 is the distance from the mid-point of rod CD to the mid-point between the two knife edges, when the frame rotates clockwise around the axis connecting the two knife edge by a small angle of α, the mid-point of rod CD (on its top surface) moves up by a distance of DD 1 sin(αα) DD 1 αα (Figure 3). 5

Direct the laser beam onto the mirror. Make sure that this incident beam is in the plane formed by the normal of the mirror and the midpoint between the two knife edges. Place the scale such that the reflected beam intercepts on the scale. Following the law of reflection, if the angle of incidence (between the incident beam and the normal of the mirror) is θθ, the angle of reflection (between the incident beam and the normal) is also θθ. When the frame rotates clockwise around the axis connecting the two knife edges by angle α, the mirror also rotates clockwise by angle α. So does the normal of the mirror. Because the incident laser beam remains at the same direction, the angle of incidence is increased by αα becoming θθ + αα. The angle of reflection then also becomes θθ + αα. Thus, the reflected beam changes direction by angle 2αα (Figure 4). In accordance, the intercept of the reflected beam on the scale moves up by a distance of h = DD 2 sin(2 αα) DD 2 2 αα, where DD 2 is the distance between the mirror and the scale. To measure the distance between the top surface of rod AB and the lower surface of rod CD, dd, bring rod CD down to press against rod AB. Measure the intercept position of the reflected beam on the scale, h 0. This serves as the reference position. After releasing rod CD, the frame rotates around the axis connecting the two knife edges by angle αα, and rod CD moves up by distance dd = DD 1 sin(αα) DD 1 αα and the intercept of the reflected beam on the scale also moves up to h with h = h h 0 = DD 2 sin(2 αα) DD 2 2 αα. h is large and can thus be easily measured, enabling accurate measurement of the distance between the two rods that is given by (h h dd = DD 1 αα = DD 0 ) 1. (4) 2 DD 2 If the radius of the two rods is r, the distance between the centers of the two rods is given by dd = dd + 2 rr = DD 1 (h h 0 ) 2 DD 2 + 2 rr. (5) 6

Measure the magnetic force between the two rods: In this lab, the repulsive magnetic force (FF) between the two rods (when carrying electric current of a certain magnitude II in opposite directions) is measured indirectly by simultaneously placing a mass mm on rod CD. If under these two forces the distance between the two rods remains unchanged, one can conclude that FF equals mmgg in magnitude. In this lab, first place a weight of mass mm at the small pan on rod CD which brings rod CD down. Then, increase the current II in the two wires to increase the repulsive magnetic force between them. When the magnitude of the magnetic force reaches that of the weight, rod CD returns to its origin position. Meanwhile, the intercept position of the reflected beam on the scale is again h. This condition is described by μμ 0 LL II 2 2 ππ dd = mmmm. (6) The permeability in free space can be determined by measuring the mmversus-ii relation. The S.I. units to be used in Equation (6) are: I the current A; L the length of rod CD in mm; d the distance separating the plates in mm; mm the mass of the weight in kg; gg = 9.80 mm/ss 2. Procedures 1. Measure the radii of rod CD and rod AB, and record their average radius (rr) in Table 1. Measure the length (LL) of rod CD. Measure the distance (DD 1 ) between the mid-point of rod CD and the mid-point of the two knife edges. Record these parameters in Table 1. TABLE 1 r (m) L (m) D 1 (m) D 2 (m) h 0 (m) h (m) 7

2. Set up the circuit (Figure 2) At this moment, the power supply should remain turned off. Connect end A of rod AB to the ground (black) of the power supply, connect end B of rod AB to end K of frame KCDK, connect end K of frame KCDK to the ground of the ammeter, connect the positive terminal of the ammeter to one terminal of the rheostat, connect the other end of the rheostat to the positive terminal (red) of the power supply. Set the ammeter to the correct sensitivity (10 A). Ask your TA to check the circuit! 3. Align rod CD with rod AB Place the two knife edges of the frame (as shown in Figure 1) on the two short parallel supporting brass beams on the board. Adjust the knife edges to make rod CD is directly above rod AB and parallel to each other. Note: the frame should stand only on the knife edges. Make sure pane Q is between the two horseshoe magnets but not touch them. Adjust the position of weight P (mainly) and weight P (secondary) to bring the distance between the two rods within a few millimeters. Make sure that the frame can freely rotate around the axis connecting the knife edges while oscillation slows down in a conveniently short period. 4. Set up the laser and the scale Caution: Do not shine the laser beams (incident or reflected) on eyes. Turn on the laser and open its shutter. Adjust the laser set-up such that the plane formed by the laser, the scale, and the mirror is perpendicular to the axis connecting the two knife edges, and that the incident laser beam intercepts the mirror and the reflected beam intercepts the scale. Measure the distance (DD 2 ) between the intercept spots of laser beams on the mirror and the scale. Record it in Table 1. 8

5. Measure the distance (d) between the central axes of rod AB and rod CD Read the intercept position (h) of the reflected beam on the scale. Record it in Table 1. Next, place the provided small coin in the pan on rod CD such that it moves down and presses against rod AB. Read the intercept position (h 0 ) of the reflected beam on the scale. Record it in Table 1. TABLE 2 mass I(A) Reversed I average (A) I 2 average 5 10-6 10 10-6 20 10-6 30 10-6 40 10-6 6. Measure the current-versus-mass relation for the equal magnitude between the weight and the magnetic force between Rod CD and Rod AB. Remove the coin. Place a mass mm = 5 mmmm in the pan on rod CD. Gradually increase the current II in the wires by reducing the resistance of the rheostat. When rod CD stops oscillating and the intercept position of the reflected beam on the scale again reaches h. Record the values of mm and II in Table 2. Repeat the measurement for mm = 10, 20, 30, 40 mg. 7. Repeat step 6 after reversing the current directions in Rod CD and Rod AB Reverse the connections to the power supply and to the Ammeter. Repeat step 6 and record the corresponding readings of the II values in Table 2. 9

Analysis 1. Use Equation (5) and the parameters in Table 1 to calculate the center-to-center distance between rod CD and rod AB. Record: dd = 2. For each mass, calculate the averaged II values from step 7 and step 8, then square the averaged II value. Record them in Table 2. 3. Plot mm-versus-(ii aaaaeeeeeeeeee ) 2 and obtain the slop with linear fit. Record the slope = 4. According to Equation (6), the slope equals μμ 0 LL 2 ππ dd gg. With gg = 9.80 mm/ss 2, use the measured dd and LL value and the fitted slope to calculate the μ 0 value. Record: μμ 0 = Questions 1. To use the measured d, we assume the current flows along the central axes of rod CD and rod AB. Because of the repulsive forces, the conduction electrons in each rod however tend to move as far away from the other rod as possible. Considering this effect, should the actual μμ 0 value be higher or lower than the measured μμ 0 value? Why? 10

2. If the length of rod AB is doubled while the length of rod CD remains the same, will the result change? 11