Cavity Quantum Electrodynamics with Superconducting Circuits

Similar documents
Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Distributing Quantum Information with Microwave Resonators in Circuit QED

Controlling the Interaction of Light and Matter...

Superconducting Qubits Lecture 4

Quantum computation and quantum optics with circuit QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Strong-coupling Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

Circuit Quantum Electrodynamics

Circuit QED: A promising advance towards quantum computing

Lecture 2, March 1, 2018

Circuit quantum electrodynamics : beyond the linear dispersive regime

Quantum optics and quantum information processing with superconducting circuits

Lecture 2, March 2, 2017

Entanglement Control of Superconducting Qubit Single Photon System

Mechanical quantum resonators

Circuit QED with electrons on helium:

Superconducting Qubits

Superconducting Qubits. Nathan Kurz PHYS January 2007

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

Entangled States and Quantum Algorithms in Circuit QED

Superconducting quantum bits. Péter Makk

Advances in Josephson Quantum Circuits

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

Quantum computation with superconducting qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Introduction to Circuit QED

Superconducting Circuits and Quantum Information

Exploring parasitic Material Defects with superconducting Qubits

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Topologicaly protected abelian Josephson qubits: theory and experiment.

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

JOSEPHSON QUBIT CIRCUITS AND THEIR READOUT

Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box

Supercondcting Qubits

Condensed Matter Without Matter Quantum Simulation with Photons

10.5 Circuit quantum electrodynamics

Entangled Macroscopic Quantum States in Two Superconducting Qubits

CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Coherent oscillations in a charge qubit

Superconducting Resonators and Their Applications in Quantum Engineering

Quantum Nonlinearities in

Dynamical Casimir effect in superconducting circuits

Driving Qubit Transitions in J-C Hamiltonian

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems

Synthesizing arbitrary photon states in a superconducting resonator

Electrical quantum engineering with superconducting circuits

Demonstration of conditional gate operation using superconducting charge qubits

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Metastable states in an RF driven Josephson oscillator

arxiv: v1 [cond-mat.supr-con] 5 May 2015

Coplanar waveguide resonators for circuit quantum electrodynamics

Theory for investigating the dynamical Casimir effect in superconducting circuits

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

arxiv: v1 [quant-ph] 31 May 2010

The Impact of the Pulse Phase Deviation on Probability of the Fock States Considering the Dissipation

Remote entanglement of transmon qubits

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

10.5 Circuit quantum electrodynamics

Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics

Parity-Protected Josephson Qubits

Electrical Quantum Engineering with Superconducting Circuits

Superconducting phase qubit coupled to a nanomechanical resonator: Beyond the rotating-wave approximation

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Quantum Physics with Superconducting Qubits

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Aug 2006

State tomography of capacitively shunted phase qubits with high fidelity. Abstract

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

4-3 New Regime of Circuit Quantum Electro Dynamics

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

Quantum non-demolition measurement of a superconducting two-level system

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Competing interests statement The authors declare that they have no competing financial interests.

arxiv:cond-mat/ v4 [cond-mat.supr-con] 13 Jun 2005

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03

arxiv: v1 [quant-ph] 13 Dec 2017

Measuring the decoherence of a quantronium qubit with the cavity bifurcation amplifier

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Strong tunable coupling between a charge and a phase qubit

Low-loss superconducting resonant circuits using vacuum-gap-based microwave components

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Dissipation in Transmon

Quantum-information processing with circuit quantum electrodynamics

Rabi oscillations, Ramsey fringes and spin echoes in an electrical circuit

Photon shot noise dephasing in the strong-dispersive limit of circuit QED

Transcription:

Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen, P. Studer (ETH Zurich) A. Blais (Sherbrooke, Canada) J. Gambetta (Waterloo, Canada) D. Schuster, A. Houck, B. Johnson, J. Schreier, J. Chow, J. Majer, L. Frunzio, M. Devoret, S. Girvin, R. Schoelkopf (Yale University)

Outline Cavity Quantum Electrodynamics Quantum Electrical Circuits Harmonic Oscillators Qubits Circuit Quantum Electrodynamics The Basics Resonant and Dispersive Circuit QED Experiments Quantum Information Processing Single Qubit Control and Read-Out in Circuit QED Quantum Geometric Phases Two-Qubit Gates

Cavity Quantum Electrodynamics D. Walls, G. Milburn, Quantum Optics (Spinger-Verlag, Berlin, 1994)

Dressed States Energy Level Diagram Atomic cavity quantum electrodynamics reviews: H. Mabuchi, A. C. Doherty Science 298, 1372 (2002) J. M. Raimond, M. Brune, & S. Haroche Rev. Mod. Phys. 73, 565 (2001)

Vacuum Rabi Oscillations with Rydberg Atoms Review: J. M. Raimond, M. Brune, and S. Haroche Rev. Mod. Phys. 73, 565 (2001) P. Hyafil,..., J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 93, 103001 (2004)

Vacuum Rabi Mode Splitting with Alkali Atoms R. J. Thompson, G. Rempe, & H. J. Kimble, Phys. Rev. Lett. 68 1132 (1992) A. Boca,..., J. McKeever, & H. J. Kimble Phys. Rev. Lett. 93, 233603 (2004)

Quantum Electronic Circuits: Artificial Atoms and Photons on a Chip

The Quantum Electronic Circuit Toolkit Capacitor Inductor Resistor? Voltage source E... Current source

Electrical Harmonic Oscillators Typical parameters for microfabricated LC: Problem #1: Linear M. Devoret, Quantum fluctuations in electrical circuits, Elsevier Science (1997)

Harmonic Oscillator: A Linear Many-Level System... Infinitely many linearly spaced energy levels Ladder operators: Product of ladder operators: Energy Contains information about which step of the ladder the oscillator is on Hamiltonian of a harmonic oscillator (the total energy):

Electrical Harmonic Oscillators: Dissipation ext. load ext. load Internal losses: conductor, dielectric = External losses: radiation, coupling Total losses: Quality factor: Relaxation rate: Characteristic impedance: Problem #2: Avoid internal and external dissipation

Artificial Atom Toolkit Capacitor Inductor Resistor? Voltage source E... Current source Transistor Josephson Junction ~ ~ 10 GHz 0.5 K

Josephson Junctions superconducting non-linear elements: superconducting top electrode superconductors: Al, Nb tunnel barrier: AlOx superconducting bottom electrode tunnel oxide layer Josephson energy : (tunneling amplitude) junction capacitance: nonlinear dissipation-less

A Superconducting Qubit: The Cooper Pair Box +++++ ----- Cg EJ/4EC=0.1 EJ CJ EJ First theoretically suggested: Shnirman et al. Phys. Rev. Lett. 79, 2371 (1997) Bouchiat et al. Physica Scripta 176, 165 (1998) First experimental realization: Y. Nakamura et al. Nature (London) 398, 786 (1999)

The Cooper Pair Box Hamiltonian (for Theorists) generic Hamiltonian for an electrical oscillator CPB Hamiltonian pick a basis in the charge basis

Many Superconducting Qubits Cooper Pair Box Quantronium Transmon Flux Phase NEC, Chalmers, JPL, Yale, ETHZ SaclayYale Yale ETHZ Delft, NTT, IPHT, NEC NIST UCSB Maryland concepts review: M. H. Devoret, A. Wallraff and J. M. Martinis, condmat/0411172 (2004) realizations review: G. Wendin and V.S. Shumeiko, cond-mat/0508729 (2005) Thousandfold increase in dephasing times: First coherent oscillations (NEC, 1999) Sweet spot (Saclay, 2002) Transmon (Yale, 2007) T2 ~ 1 ns T2 ~ 500 ns T2 ~ 2000 ns

How to do Control: Single-Qubit Gates à la NMR Cg EJ/4EC=0.1 EJ CJ ω 01 Experimental results: NOT-gate (π-pulse) Single qubit Hamiltonian, with drive: NOT-gate (π/2-pulse) Relaxation and dephasing times: T1 ~ 1.8 μs * T2 ~ 500ns (Bit flip) (Phase randomization) Vion et al., Science 296 886 (2002)

Problem: Charge (and other types of) Noise 300 K 10 mk Cg EJ/4EC=0.1 EJ CJ ω 01 Charge fluctuations: Golden rule: Solutions: Suppress relaxation by suppressing noise at qubit frequency (circuit QED) Suppress phase randomization with flat energy bands (Transmon)

Solution: Reduce Charge Noise Sensitivity Cg EJ/4EC=0.1 EJ/4EC=10 EJ/4EC=2 CS EJ CJ ~ 8EJEC -EC Charge dispersion decreases more rapidly than anharmonicity: Predicted long dephasing times: J. Koch et al., PRA 76, 042319 (2007) Measured long dephasing times: J. A. Schreier et al. PRB 77, 180502 (2008)

Two Versions of the Cooper Pair Box M. Goppl, P. Leek (Quantum Device Lab, ETHZ, 2007)

Circuit Quantum Electrodynamics

Cavity QED with Superconducting Circuits Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001). O. Buisson and F. Hekking, in Macroscopic Quantum Coherence and Quantum Computing, edited by D. V. Averin, B. Ruggiero, and P. Silvestrini (Kluwer, New York, 2001). F. Marquardt and C. Bruder, Phys. Rev. B 63, 054514 (2001). F. Plastina and G. Falci, Phys. Rev. B 67, 224514 (2003). A. Blais, A. Maassen van den Brink, and A. Zagoskin, Phys. Rev. Lett. 90, 127901 (2003). W. Al-Saidi and D. Stroud, Phys. Rev. B 65, 014512 (2001). C.-P. Yang, S.-I. Chu, and S. Han, Phys. Rev. A 67, 042311 (2003). J. Q. You and F. Nori, Phys. Rev. B 68, 064509 (2003).

Cavity QED with Superconducting Circuits A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004)

Circuit Quantum Electrodynamics elements the cavity: a superconducting 1D transmission line resonator with large vacuum field E 0 and long photon life time 1/κ the artificial atom: a Cooper pair box with large dipole moment d and long coherence time 1/γ A. Blais et al., PRA 69, 062320 (2004)

Vacuum Field in 1D Cavity E - B + + - 1 mm

Storing Photons and Controlling their Life Time 100µm 1 mm 100µm 100µm photon lifetime (quality factor) controlled by coupling capacitor C in/out 100µm

Resonator Quality Factor and Photon Lifetime

Energy Levels of a Superconducting Qubit

B-Field Dependence of Energy Levels J. Koch et al., Phys. Rev. A 76, 042319 (2007)

Strong Coupling Cavity QED Circuit

Resonant Vacuum Rabi Mode Splitting first demonstration: A. Wallraff, and R. J. Schoelkopf, Nature (London) 431, 162 (2004) this data: J. Fink et al., Nature (London) 454, 315 (2008)

How to Measure Single Microwave Photons

microwave electronics 20 mk cryostat Measurement Setup cold stage sample mount

Strong Coupling with Superconducting Circuits Yale University (now also ETH Zurich) Nature (London) 431, 162 (2004) TU Delft. Nature (London) 431, 159 (2004) NTT PRL 96, 127006 (2006) NIST Boulder (now also at UCSB) Nature (London) 449, 438 (2007) NEC Nature (London) 449, 588 (2007)

The Quantum Nonlinearity of the J-C Ladder

Climbing the Jaynes-Cummings Ladder

Two-Photon Pump and Probe Spectroscopy J. Fink, M. Goeppl, M. Baur, R. Bianchetti, P. Leek, A. Blais, A. Wallraff, Nature (London) 454, 315 (2008)

Resonant Vacuum Rabi Mode Splitting J. Fink, M. Goeppl, M. Baur, R. Bianchetti, P. Leek, A. Blais, A. Wallraff, Nature (London) 454, 315 (2008)

Resonant Vacuum Rabi Mode Splitting J. Fink, M. Goeppl, M. Baur, R. Bianchetti, P. Leek, A. Blais, A. Wallraff, Nature (London) 454, 315 (2008)

Sqrt(n) Quantum Nonlinearity J. Fink,, A. Wallraff, Nature (London) 454, 315 (2008)

Cavity QED with Multiple Atoms

Two- Atom Cavity QED

Two Qubit Vacuum-Rabi Mode Splitting

Dispersive Qubit-Photon Interaction A. Blais et al., PRA 69, 062320 (2004)

Qubit Spectroscopy & AC-Stark Effect D. I. Schuster et al., Phys. Rev. Lett. 94, 123062 (2005)

Photon Number Dependent Quantum Light Shift

Measuring Photon Number Statistics Schuster, Houck, Schreier, Wallraff, Gambetta, Blais, Frunzio, Johnson, Devoret, Girvin, Schoelkopf, Nature 445, 515 (2007)

Qubit Control and Time Resolved Measurements Rabi Oscillations, Ramsey Fringes, Tomography

Qubit Control and Readout Wallraff, Schuster, Blais,... Girvin, and Schoelkopf, Phys. Rev. Lett. 95, 060501 (2005)

Rabi Oscillations (weak cont. measurement)

High Fidelity Control & Read Out

Quantum State Tomography

Single Qubit Coherence: Ramsey Fringes A. Wallraff et al., Phys. Rev. Lett. 95, 060501 (2005)

Spin Echo Experiment 1 Spec= 4.83 dbm ü 3.704GHz, AWG Hi 0.45 mv 0.8 P op H a rb s L 0.6 0.4 0.2 0 1000 2000 3000 4000 5000 6000 7000 Sequence duration HnsL Lars Steffen et al. (2007)

Circuit QED and Quantum Optics

Quantum Computation with Circuit QED

The ETH Zurich Quantum Device Lab with funding from: lab started in April 2006

The Yale Circuit QED Team

Circuit QED Publications circuit QED proposal: Blais, Huang, Wallraff, Girvin, Schoelkopf, PRA 69, 062320 (2004) strong coupling & vacuum Rabi mode splitting: Wallraff, Schuster, Blais, Frunzio, Huang, Majer, Kumar, Girvin, Schoelkopf, Nature 431, 162 (2004) Fink, Goeppl, Baur, Bianchetti, Leek, Blais, Wallraff, Nature 454, 315 (2008) high visibility Rabi oscillations & coherence time measurements: Wallraff, Schuster, Blais, Frunzio, Majer, Girvin, and Schoelkopf, PRL 95, 060501 (2005) ac Stark shift, number splitting & measurement induced dephasing: Schuster, Wallraff, Blais, Frunzio, Huang, Majer, Girvin, Schoelkopf, PRL 94, 123062 (2005) Gambetta, Blais, Schuster, Wallraff, Frunzio, Majer, Devoret, Girvin, Schoelkopf, PRA 74, 042318 (2006) Schuster, Houck, Schreier, Wallraff, Gambetta, Blais, Frunzio, Johnson, Devoret, Girvin, Schoelkopf, Nature 445, 515 (2007) circuit QED gates, side band transitions: Blais, Gambetta, Wallraff, Schuster, Devoret, Girvin, Schoelkopf, PRA 75, 032329 (2007) Wallraff, Schuster, Blais, Gambetta,, Frunzio, Devoret, Girvin, Schoelkopf, PRL 99, 050501 (2007) Majer, Chow, Gambetta, Koch, Johnson, Schreier, Frunzio, Schuster, Houck, Wallraff, Blais, Devoret, Girvin, Schoelkopf, Nature 449, 443 (2007) Leek, Fink, Blais, Bianchetti, Goeppl, Gambetta, Schuster, Frunzio, Schoelkopf, Wallraff, Science 318, 1889 (2007) circuit QED device fabrication: Frunzio, Wallraff, Schuster, Majer, Schoelkopf, IEEE Trans. Appl. Supercond. 15, 860 (2005)