Quantum Dense Coding and Quantum Teleportation

Similar documents
Experimental quantum teleportation. Dirk Bouwmeester, Jian Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter & Anton Zeilinger

A Superluminal communication solution based on Four-photon entanglement

Experimental Quantum Teleportation of a Two-Qubit

Quantum Teleportation. Gur Yaari for HEisenberg's Seminar on Quantum Optics

Problem Set: TT Quantum Information

Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation

Quantum Teleportation with Photons. Bouwmeester, D; Pan, J-W; Mattle, K; et al. "Experimental quantum teleportation". Nature 390, 575 (1997).

AP/P387 Note2 Single- and entangled-photon sources

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

Quantum Memory with Atomic Ensembles

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Quantum Optical Implementation of Quantum Communication

Teleporting an Unknown Quantum State Via Dual Classical and Einstein Podolsky Rosen Channels 1

arxiv: v1 [quant-ph] 9 May 2012

arxiv:quant-ph/ v1 2 Oct 1997

arxiv:quant-ph/ v1 4 Mar 2005

Quantum Teleportation Pt. 1

Experimental demonstrations of teleportation of photons. Manuel Chinotti and Nikola Đorđević

Quantum Teleportation

Single-photon quantum error rejection and correction with linear optics

arxiv:quant-ph/ v3 5 Feb 2004

The information content of a quantum

Measuring Quantum Teleportation. Team 10: Pranav Rao, Minhui Zhu, Marcus Rosales, Marc Robbins, Shawn Rosofsky

Multi-Particle Entanglement & It s Application in Quantum Networks

Teleportation of a Zero- and One-photon Running Wave State by Projection Synthesis

Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state

An entangled LED driven quantum relay over 1km

arxiv:quant-ph/ v1 1 Jun 2000

arxiv:quant-ph/ v2 3 Oct 2000

Optik 122 (2011) Contents lists available at ScienceDirect. Optik. journal homepage:

Entanglement and Quantum Teleportation

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Introduction to Quantum Information Hermann Kampermann

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

Memory-built-in quantum teleportation with photonic and

Entanglement and information

Average Fidelity of Teleportation in Quantum Noise Channel

The Conversion Revolution: Down, Up and Sideways

arxiv:quant-ph/ v1 13 Jan 2003

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

Broadband energy entangled photons and their potential for space applications. André Stefanov University of Bern, Switzerland

Quantum Information Transfer and Processing Miloslav Dušek

arxiv:quant-ph/ Oct 2002

Single qubit + CNOT gates

Teleportation of electronic many- qubit states via single photons

Quantum Teleportation Pt. 3

Introduction to Quantum Key Distribution

arxiv:quant-ph/ v1 5 Sep 2002

Novel Cascaded Ultra Bright Pulsed Source of Polarization Entangled Photons

Jian-Wei Pan

Remote State Preparation: Arbitrary remote control of photon polarizations for quantum communication

Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties

arxiv: v1 [quant-ph] 24 Jun 2014

EXPERIMENTAL DEMONSTRATION OF QUANTUM KEY

Quantum information and quantum computing

D. Bouwmeester et. al. Nature (1997) Joep Jongen. 21th june 2007

o. 5 Proposal of many-party controlled teleportation for by (C 1 ;C ; ;C ) can be expressed as [16] j' w i (c 0 j000 :::0i + c 1 j100 :::0i + c

Fidelity of Quantum Teleportation through Noisy Channels

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

Quantum Gates, Circuits & Teleportation

Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

arxiv:quant-ph/ v2 5 Apr 2005

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

Quantum Communication. Serge Massar Université Libre de Bruxelles

Lecture: Quantum Information

Physics is becoming too difficult for physicists. David Hilbert (mathematician)

Ping Pong Protocol & Auto-compensation

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

arxiv:quant-ph/ v1 27 Dec 2004

Linear-optical quantum information processing: A few experiments

IBM quantum experience: Experimental implementations, scope, and limitations

Quantum Teleportation

Characterization of Entanglement Photons Generated by a Spontaneous Parametric Down-Conversion Pulse Source

Teleportation of a two-atom entangled state via cavity decay

quantum error-rejection

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

A single quantum cannot be teleported

SUPPLEMENTARY INFORMATION

Quantum walks: Definition and applications

Polarization-momentum hyperentangled states: Realization and characterization

Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Experimental Quantum Teleportation. Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, and Anton Zeilinger

Squashed entanglement

arxiv:quant-ph/ v1 16 Dec 2001

arxiv: v1 [quant-ph] 1 Nov 2012

Quantum Entanglement and Bell s Inequalities Zachary Evans, Joel Howard, Jahnavi Iyer, Ava Dong, and Maggie Han

CS/Ph120 Homework 1 Solutions

Quantum Interference of Unpolarized Single Photons

Chapter 13: Photons for quantum information. Quantum only tasks. Teleportation. Superdense coding. Quantum key distribution

Title Experimental long-distance quantum secure direct communication

Quantum secret sharing based on quantum error-correcting codes

A scheme for generation of multi-photon GHZ states with cross-kerr nonlinearities

Scheme for Asymmetric and Deterministic Controlled Bidirectional Joint Remote State Preparation

An Introduction to Quantum Information. By Aditya Jain. Under the Guidance of Dr. Guruprasad Kar PAMU, ISI Kolkata

Generation and classification of robust remote symmetric Dicke states

Entanglement concentration for multi-atom GHZ class state via cavity QED

Superconducting Qubits Lecture 4

Hyperentanglement for advanced quantum communication

Erwin Schrödinger and his cat

Entangled State Teleportation

Transcription:

Lecture Note 3 Quantum Dense Coding and Quantum Teleportation Jian-Wei Pan

Bell states maximally entangled states: ˆ Φ Ψ Φ x σ Dense Coding Theory: [C.. Bennett & S. J. Wiesner, Phys. Rev. Lett. 69, 88 99] ˆ ˆ Φ Ψ Φ Φ y z i σ σ

Dense Coding. Alice and Bob share an entangled photon pair in the state of Φ.. Bob chooses one of the four unitary transformation { I, σ } z, σ x, σ y on his photon. The information of which choice is bit. 3. Bob sends his photon to Alice. 4. Alice performs a joint Bell-state measurement on the photon from Bob and her photon. 5. With the measurement result, she can tell Bob s unitary transformation and achieve the bit information.

Teleportation Classical Physics Scanning and Reconstructing Quantum Physics eisenberg Uncertainty Principle Forbidden Extracting All the Information from An Unknown Quantum State

Quantum Teleportation --- Six Author Scheme A A A 0 β α Φ 0 0 0 0 ± ± ± ± φ ψ [C.. Bennett et al., Phys. Rev. Lett. 73, 380 993] Bell states maximally entangled states β α 0 0 0 0 C C AB C C AB C C AB C C AB BC A ABC β α β α β α β α Ψ Ψ Φ Φ Φ Φ Ψ

Teleportation of entanglement ----Entanglement Swapping Ψ 34 Φ Φ Ψ 4 Φ Φ Ψ 3 34 34 Φ Ψ Φ 34 34 Ψ [M. Zukowski et al., Phys. Rev. Lett. 7, 487 993]

Experimental Ingredient Entangled photon pair by Spontaneous Parametric down conversion SPDC time bin entanglement momentum entanglement polarization entanglement. Bell state analyzer photon statistics at a beamsplitter

SPDC Type I Type II

SPDC time bin entanglement Ψ short short a b long a long b [J. Brendel et al., Phys. Rev. Lett. 8, 594 999]

SPDC momentum entanglement Ψ u d d u [Z. B. Chen et al., Phys. Rev. Lett. 90, 60408 003]

SPDC polarization entanglement ± Ψ ± Φ ± ± [P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337 995]

Bell state analyzer with Linear Optics Controlled-NOT gate,, Φ Ψ Ψ ± [. Weinfurter, Eruophys. Lett. 5, 559 995] [J.-W. Pan et al., Phys. Rev. A 998] ±

Bell state analyzer with Linear Optics To realize a Bell state measurement is to make the two input SPDC photons indistinguishable on the BS. The method is to make the two photons spatially and timely overlapped on the BS perfectly. owever, the timely overlap is difficult since the SPDC photon has a ultrasmall coherent time about 00fs, definitely shorter than the time resolution of state-of-the-art single photon detector. What we can do is to scan the interference fringes to make it sure that the two photons arrive at the same time. But a cw laser will No interference fringes

Bell state analyzer with Linear Optics A solution is to use Pulse laser The pulse will bring some time jitter to the SPDC photon, we insert a narrow band filter can extend the coherent time of the SPDC photon

Experimental Dense Coding 0 Φ Ψ Ψ ˆ ˆ ˆ [K. Mattle et al., Phys. Rev. Lett. 76, 4656 996]

Experimental Realizations of quantum teleportation D. Bouwmeester, et al., Nature 390, 575-579 997 photons D. Boschi, et al., Phys. Rev. Lett. 80, -5 998 photons. J-W. Pan, et al., Phys. Rev. Lett. 80, 389 3894 998 mixed state of photons. A. Frusawa, et al., Science 8, 706 999 continuous-variable M. Riebe, et al., Nature 49, 734-737 004 trapped calcium ions. M.D. Barret, et al., Nature 49, 737-739 004 trapped beryllium ions I. Marcikic, et al., Nature 4, 509-53 003 long distance R. Ursin, et al., Nature 430, 849 004 long distance Z. Zhao, et al., Nature 430, 54 004 open destination teleportation

Experimental Quantum Teleportation The setup [D. Bouwmeester et al., Nature 390, 575 997]

Experimental Quantum Teleportation The result [D. Bouwmeester et al., Nature 390, 575 997]

Experimental Entanglement Swapping The setup The result [J.-W. Pan et al., Phys. Rev. Lett. 80, 389 998]

A Two-Particle Quantum teleportation experiment b b a a Ψ β α ψ. Sharing EPR Pair. Initial State Preparation ] [ b a b a b a b a b a b a b a b a b b a a β α β α α β α β ψ Φ 3. BSM [D. Boschi et al., Phys. Rev. Lett. 80, 998]

Applications of Entanglement Swapping Quantum telephone exchange Speed up the distribution of entanglement [S. Bose et al., Phys. Rev. A 57, 8 998]

Applications of Entanglement Swapping BSM E N E3 E N E [S. Bose et al., Phys. Rev. A 57, 8 998]

Ψ β α ] [ 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 345 345 Ψ Ψ Φ Φ Φ Ψ Ψ β α β α β α β α Open-Destination Teleportation Sharing a secret quantum state of single particles [A. Karlsson et al., Phys. Rev. A 58, 4394 998] [R. Cleve et al., Phys. Rev. Lett. 83, 648 999]

Experimental Setup

Experimental Results [Z. Zhao et al., Nature 430, 54 004]

Teleportation of a composite system ----Scheme Initial State χ α β γ δ 34 3 4 3 4 3 4 3 4 ---horizontal polarization --- vertical polarizations Just as the single qubit teleportation, first teleport photon to photon 5 χ Φ Φ χ Φ ˆ σ ˆ ˆ 35 3 5 3 z χ Ψ σ 5 3 x χ Ψ iσ 5 3 y χ 5 And then, we teleport photon to photon 6 χ Φ Φ χ Φ ˆ σ ˆ ˆ 5 46 4 56 4 z χ Ψ σ 56 4 x χ Ψ iσ 56 4 y χ 56 Finally, we can teleport the state of photon, to photon 5,6

Teleportation of a composite system ----Setup

State Teleportation of a composite system ----Result Fidelity Fidelity with noise reduction Fidelity: - 0.86±0.03 0.60±0.03 0.97±0.03 0.7±0.03 Pure state F ini ψ ψ Tel -i 0.75±0.0 0.83±0.0 Mixed state F Tr ρ ψ ψ ini Average 0.74±0.03 0.84±0.03 Well beyond the clone limit 0.40 [A. ayashi et al., Phys. Rev. A. 7, 0335 005.] Teleported State of - is Still Entangled! Tr ρw Tr[ ρ RL 0.3 ± 0.04 < 0 RL LR [M. Barbieri, et al. Phys. Rev. Lett. 9, 790 003.] LR ]

Experimental Teleportation of a Two-Qubit Composite System Q. Zhang et al., Experimental quantum teleportation of a two-qubit composite system, Nature Physics, 678-68 006.

Our dream