Ultra-quantum metals. Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

Similar documents
The disordered Hubbard model: from Si:P to the high temperature superconductors

Transport in non-fermi liquids

From the SYK model to a theory of the strange metal

Quantum matter without quasiparticles

From the SYK model, to a theory of the strange metal, and of quantum gravity in two spacetime dimensions

Quantum matter without quasiparticles: SYK models, black holes, and the cuprate strange metal

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Disordered metals without quasiparticles, and charged black holes

Strange metals and black holes

SYK models and black holes

Universal theory of complex SYK models and extremal charged black holes

Equilibrium and non-equilibrium dynamics of SYK models

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

NEW HORIZONS IN QUANTUM MATTER

General relativity and the cuprates

Universal theory of complex SYK models and extremal charged black holes

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

Emergent gauge fields and the high temperature superconductors

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Quantum criticality of Fermi surfaces

Strange metal from local quantum chaos

Entanglement, holography, and strange metals

From the pseudogap to the strange metal

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Entanglement, holography, and strange metals

Theory of the Nernst effect near the superfluid-insulator transition

Emergent light and the high temperature superconductors

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017

Topological order in the pseudogap metal

Subir Sachdev Research Accomplishments

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Topological order in quantum matter

UNIVERSAL BOUNDS ON DIFFUSION

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Quantum Phase Transitions

A quantum dimer model for the pseudogap metal

Which Spin Liquid Is It?

3. Quantum matter without quasiparticles

Building a theory of transport for strange metals. Andrew Lucas

Quantum phase transitions and the Luttinger theorem.

Quantum Criticality and Black Holes

A New look at the Pseudogap Phase in the Cuprates.

Metals without quasiparticles

Perimeter Institute January 19, Subir Sachdev

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

arxiv: v1 [hep-th] 26 Sep 2017

Confinement-deconfinement transitions in Z 2 gauge theories, and deconfined criticality

2015 Summer School on Emergent Phenomena in Quantum Materials. Program Overview

Holography of compressible quantum states

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Exotic phases of the Kondo lattice, and holography

Topological order in quantum matter

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

arxiv: v1 [cond-mat.str-el] 16 Mar 2016

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter

Random Matrices, Black holes, and the Sachdev-Ye-Kitaev model

Quantum mechanics without particles

Quantum oscillations in insulators with neutral Fermi surfaces

Quantum phase transitions in condensed matter

SPT: a window into highly entangled phases

(Effective) Field Theory and Emergence in Condensed Matter

Subir Sachdev. Talk online: sachdev.physics.harvard.edu

Z 2 topological order near the Neel state on the square lattice

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter

Talk online: sachdev.physics.harvard.edu

Mean field theories of quantum spin glasses

The underdoped cuprates as fractionalized Fermi liquids (FL*)

An Upper Bound on Transport

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

Transport bounds for condensed matter physics. Andrew Lucas

Quantum disordering magnetic order in insulators, metals, and superconductors

Topological order in insulators and metals

Topology, quantum entanglement, and criticality in the high temperature superconductors

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Holographic transport with random-field disorder. Andrew Lucas

Universal phase transitions in Topological lattice models

Emergent Quantum Criticality

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Integer quantum Hall effect for bosons: A physical realization

Bekenstein-Hawking entropy and strange metals

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Condensed Matter Physics in the City London, June 20, 2012

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Strongly correlated Cooper pair insulators and superfluids

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Symmetric Surfaces of Topological Superconductor

Theory of Quantum Matter: from Quantum Fields to Strings

Large N fermionic tensor models in d = 2

Quantum Melting of Stripes

The Dirac composite fermions in fractional quantum Hall effect. Dam Thanh Son (University of Chicago) Nambu Memorial Symposium March 12, 2016

Max-Planck-Institut für Physik komplexer Systeme Dresden, May 22, Subir Sachdev

Relativistic magnetotransport in graphene

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Black holes and random matrices

Quantum Entanglement and Superconductivity. Subir Sachdev, Harvard University

Transcription:

Ultra-quantum metals Subir Sachdev February 5, 2018 Simons Foundation, New York HARVARD

<latexit sha1_base64="k7jx8efbma2lrujxy27hncmbd18=">aaadi3icdvjnb9naelxnvzffkry5jehqilrsjwkl4vsvc9ykagilbejw67g9qr3r7q4brvb4l1z4k1w4qmwfa/+ftekigmboz++9mz1967diudzb8mp1rly9dv3gxk3/1u07d+81nu+/07judidmzlidh1rjxguodtczhhckar5mebsevfzqr2eonjfi0mwlhoc0etzmjbplttbdfytehiukotcofv4w5kcln7luhpgvwz1qkywwmj2+nyqkbnvtbui+whk63afrpa/xgskulz30m5tk9g0z2/j0tktclhm7vbb8jozmkfinfbrqe1f+xs18g1pepbk1dbousxrkiho9nrqsggiew2grnk5ftazcgjy5arnrakitsqlpdr7vtqibleswmwkrz1es09bp7ax/tlwxwmsbca0mragxhvjwazku96ocyccnkkklrcanztajukfvtwswrmqc/mdqf/4mujxtdoo6mdtossrzatcwlknaj7pbycyvvyazdbc+ktuwlj3qbecwcpqjhlerj1jay8teentayykmrnjlhrxntz7noxxm1kt6b21j/ksblsbehvdcfkvbwdyhxwugrslyj7grkwqmm1tamej2v2apvztzdlrvq7i4kfwfdhudqsd402vu7ddpbdgpnufoltn1+s6e88o5ciyocz+6n92v7jfvk/ffo/e+r62ew/c8cp4o7+cvfkr9bq==</latexit> Ubiquitous Strange, Bad, Incoherent, or Ultra-quantum metal has a resistivity,, which obeys T, and in some cases h/e 2 (in two dimensions), where h/e 2 is the quantum unit of resistance.

Ultra-quantum metals just got stranger B-linear magnetoresistance!? Ba-122 LSCO I. M. Hayes et. al., Nat. Phys. 2016 P. Giraldo-Gallo et. al., arxiv:1705.05806

Ultra-quantum metals just got stranger Scaling between B and T!? Ba-122 Ba-122 I. M. Hayes et. al., Nat. Phys. 2016

Interactions between L. Balents, J. McGreevy, S. Sachdev, T. Senthil (partly nucleated by student, Aavishkar Patel) Quantum spin liquids and the metal-insulator transition in doped semiconductors, Andrew C. Potter, Maissam Barkeshli, John McGreevy, T. Senthil, Phys. Rev. Lett. 109, 077205 (2012). A strongly correlated metal built from Sachdev-Ye-Kitaev models, Xue-Yang Song, Chao-Ming Jian, Leon Balents, Phys. Rev. Lett. 119, 216601 (2017). Magnetotransport in a model of a disordered strange metal, Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:1712.05026 Translationally invariant non-fermi liquid metals with critical Fermi-surfaces: Solvable models, Debanjan Chowdhury, Yochai Werman, Erez Berg, T. Senthil, arxiv:1801.06178

H = The Sachdev-Ye-Kitaev (SYK) model 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Pick a set of random positions

The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Place electrons randomly on some sites

The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X Entangle electrons pairwise randomly

The SYK model H = 1 (2N) 3/2 NX i,j,k,`=1 U ij;k` f i f j f k f` µ X i f i f i X This describes both a strange metal and a black hole!

The SYK model Feynman graph expansion in U ijk`, and graph-by-graph average, yields exact equations in the large N limit: G(i!) = 1 i! + µ (i!) G( =0 )=Q., ( ) = U 2 G 2 ( )G( ) S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

The SYK model Feynman graph expansion in U ijk`, and graph-by-graph average, yields exact equations in the large N limit: G(i!) = 1 i! + µ (i!) X G( =0 )=Q., ( ) = U 2 G 2 ( )G( ) Low frequency analysis shows that the solutions must be gapless and obey (z) =µ 1 Ap z +..., G(z) = A pz where A = e i /4 ( /U 2 ) 1/4 at half-filling. The ground state is a non-fermi liquid, with a continuously variable density Q. <latexit sha1_base64="0uo4waqgszzn7hs7cocap/zkzug=">aaaerhicdzpfj9ngemfnjbq0pevoh/sy4lj018bbusblh4tetrlxb4rakij0zp3w9tiz3nrxt7u+ycz/kf3d+p/wynhjwopgpzxhszm7+/3sbfrisi4i/rmy0+tf/ella18nvr7+zbc3dm9+96fvpylxhmupzetiwjskco7isxxdgbr5jpfvdp57u/7qeo0lrv66qsbfljjfkcxcsevs5s7fodkkelru8bgrlqsfmrhfevbnivsbb6rgod+r6a/zekvshimqkllh+vhlr8mfvxezjqailinldbe7wiuyk2tbtdwsqqqtiqyfdkfstu7biiwwi1ulszlqbsf7foocm3eadyfmjyjrsvmtrj3wm4r5ct6elyjlbfwb3edihrk4pdoy24dqibldygeynx7cmc+n73jfxxusx5v5habckou3tk4itv0dun0eihdugqtzp2/g/8uoqltj9tbp9apsw1jrxrwzebkyzmeu9cqyaoe65vblco0il62dccethurro5o6wuojflsnbzswa91bikes2f4yv79twigy0c5upg8rhg8su5sjpt7gn59rsvqi4zs54hw8rx1mxtcdaco8+mvwdk7rcf8pgfushuz9lcr3xtagl6wum7pkgdyjh8dibxar/zganpiml0pkrraix30csvaovkllkyu4fiyenytwb1pyfqw/ad4cn+3ubepg7mz66wsc8sqi7s1mbmyms9nsecbjobt73my8o9t9fyy6lnpu51gka08mqeewttcoyokmtbryipicw/wetsvytkpkkgrbmyu6e1in/milcata8fqoou+hybxira3yicpb89qp11rnp9zospfew9skitjxu6wlpauep6f9n5cqwdgxmyrebiipdffs8b06fswd0ci/czw5zr06fonwlhcdekqqyvrbhvb5y344vj8onh/upfptw+ya94n3y9v3jt5d75h3h/fmm3txr9/7qfdlb9q/05/3t/qldejolu3o997/rj99d+7mgd4=</latexit> <latexit sha1_base64="0uo4waqgszzn7hs7cocap/zkzug=">aaaerhicdzpfj9ngemfnjbq0pevoh/sy4lj018bbusblh4tetrlxb4rakij0zp3w9tiz3nrxt7u+ycz/kf3d+p/wynhjwopgpzxhszm7+/3sbfrisi4i/rmy0+tf/ella18nvr7+zbc3dm9+96fvpylxhmupzetiwjskco7isxxdgbr5jpfvdp57u/7qeo0lrv66qsbfljjfkcxcsevs5s7fodkkelru8bgrlqsfmrhfevbnivsbb6rgod+r6a/zekvshimqkllh+vhlr8mfvxezjqailinldbe7wiuyk2tbtdwsqqqtiqyfdkfstu7biiwwi1ulszlqbsf7foocm3eadyfmjyjrsvmtrj3wm4r5ct6elyjlbfwb3edihrk4pdoy24dqibldygeynx7cmc+n73jfxxusx5v5habckou3tk4itv0dun0eihdugqtzp2/g/8uoqltj9tbp9apsw1jrxrwzebkyzmeu9cqyaoe65vblco0il62dccethurro5o6wuojflsnbzswa91bikes2f4yv79twigy0c5upg8rhg8su5sjpt7gn59rsvqi4zs54hw8rx1mxtcdaco8+mvwdk7rcf8pgfushuz9lcr3xtagl6wum7pkgdyjh8dibxar/zganpiml0pkrraix30csvaovkllkyu4fiyenytwb1pyfqw/ad4cn+3ubepg7mz66wsc8sqi7s1mbmyms9nsecbjobt73my8o9t9fyy6lnpu51gka08mqeewttcoyokmtbryipicw/wetsvytkpkkgrbmyu6e1in/milcata8fqoou+hybxira3yicpb89qp11rnp9zospfew9skitjxu6wlpauep6f9n5cqwdgxmyrebiipdffs8b06fswd0ci/czw5zr06fonwlhcdekqqyvrbhvb5y344vj8onh/upfptw+ya94n3y9v3jt5d75h3h/fmm3txr9/7qfdlb9q/05/3t/qldejolu3o997/rj99d+7mgd4=</latexit> S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

The SYK model Many-body level spacing 2 N = e N ln 2 Non-quasiparticle excitations with spacing e Ns 0 There are 2 N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N = 12. The T! 0 state has an entropy S GP S = Ns 0 with s 0 = G + ln(2) 4 < ln 2 = 0.464848... where G is Catalan s constant, for the half-filled case Q =1/2. GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001) W. Fu and S. Sachdev, PRB 94, 035135 (2016)

The SYK model Many-body level spacing 2 N = e N ln 2 There are 2 N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N = 12. The T! 0 state has an entropy S GP S = Ns 0 with s 0 = G + ln(2) 4 < ln 2 = 0.464848... Non-quasiparticle excitations with spacing e Ns 0 W. Fu and S. Sachdev, PRB 94, 035135 (2016) where G is Catalan s constant, for the half-filled case Q =1/2. GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB 63, 134406 (2001) For SYK models with N =2supersymmetry,GPS=BPS <latexit sha1_base64="hy0bptipu7u4cqjcamcnhahepgg=">aaacqhicbvdpsxtbgj21ttq1rbeevqzgqg8lbijepqiiuavbijgakg1hdvbbzhb+ldozsljyr3npf9bb7714uphqydm4qmv9to/3vh/ve1hkmbfb8nubetp79t3c/ht/4cpht4uvpc+nrmwaqocqrnq3igy4k9cxzhlophqiidicred7hx52adowju/soiw+iepjekajddsg0g0jgdkzu5aw9mt/rjru/zjeqsxadb5kdhsgec0uxi4o4fnrzluxhk2wup1jicdq8te832pv77bafggyft40qfsdwjathntwt5rnzgfkpl6ckiqrnaj8cmnfm+hgksfg9opbavs50zzrdhm/zaykhj6tifqclesa6eftbcb4i2nindjziziwt9m/j3iijpmbuc7ie/nsk8jxtf5mk81+zmsawzd06vcscwwvlulemdnalr87qkhmziumi6ijdrky34vqf/ny/6dtqg3vgungdwe3tgmerabv9bxv0qbaqqeohtqioiv0b92gw++nd+3defdprtneobom/inv4rg1kk//</latexit> <latexit sha1_base64="hy0bptipu7u4cqjcamcnhahepgg=">aaacqhicbvdpsxtbgj21ttq1rbeevqzgqg8lbijepqiiuavbijgakg1hdvbbzhb+ldozsljyr3npf9bb7714uphqydm4qmv9to/3vh/ve1hkmbfb8nubetp79t3c/ht/4cpht4uvpc+nrmwaqocqrnq3igy4k9cxzhlophqiidicred7hx52adowju/soiw+iepjekajddsg0g0jgdkzu5aw9mt/rjru/zjeqsxadb5kdhsgec0uxi4o4fnrzluxhk2wup1jicdq8te832pv77bafggyft40qfsdwjathntwt5rnzgfkpl6ckiqrnaj8cmnfm+hgksfg9opbavs50zzrdhm/zaykhj6tifqclesa6eftbcb4i2nindjziziwt9m/j3iijpmbuc7ie/nsk8jxtf5mk81+zmsawzd06vcscwwvlulemdnalr87qkhmziumi6ijdrky34vqf/ny/6dtqg3vgungdwe3tgmerabv9bxv0qbaqqeohtqioiv0b92gw++nd+3defdprtneobom/inv4rg1kk//</latexit>

The SYK model Low energy, many-body density of states (E) e Ns 0 sinh( p 2(E E 0 )N ) D. Stanford and E. Witten, 1703.04612 A. M. Garica-Garcia, J.J.M. Verbaarschot, 1701.06593 D. Bagrets, A. Altland, and A. Kamenev, 1607.00694 Low temperature entropy S = Ns 0 + N T +... T = 0 fermion Green s function G( ) 1/2 at large. (Fermi liquids with quasiparticles have G( ) 1/ ) T>0Green sfunction has conformal invariance G (T/sin( k B T /~)) 1/2 A. Georges and O. Parcollet PRB 59, 5341 (1999) The last property indicates eq ~/(k B T ), and this has been found in a recent numerical study. A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arxiv:1706.07803

Black holes Black holes have an entropy and a temperature, T H = ~c 3 /(8 GMk B ). The entropy is proportional to their surface area. They relax to thermal equilibrium in a time ~/(k B T H ).

LIGO September 14, 2015 The ring-down is predicted by General Relativity to happen in a time 8 GM c 3 8 milliseconds. Curiously this happens to equal ~ k B T H : so the ring down can also be viewed as the approach of a quantum system to thermal equilibrium at the fastest possible rate.!

The SYK model Low energy, many-body density of states (E) e Ns 0 sinh( p 2(E E 0 )N ) D. Stanford and E. Witten, 1703.04612 A. M. Garica-Garcia, J.J.M. Verbaarschot, 1701.06593 D. Bagrets, A. Altland, and A. Kamenev, 1607.00694 Low temperature entropy S = Ns 0 + N T +... T = 0 fermion Green s function G( ) 1/2 at large. (Fermi liquids with quasiparticles have G( ) 1/ ) T>0Green sfunction has conformal invariance G (T/sin( k B T /~)) 1/2 A. Georges and O. Parcollet PRB 59, 5341 (1999) The last property indicates eq ~/(k B T ), and this has been found in a recent numerical study. A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arxiv:1706.07803

Black hole horizon SYK and black holes ~x Black holes with a near-horizon AdS2 geometry (described by quantum gravity in 1+1 spacetime dimensions) match the properties of the 0+1 dimensional SYK model in the previous slide: Ns0 is the Bekenstein-Hawking entropy S. Sachdev, PRL 105, 151602 (2010); A. Kitaev (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arxiv:1606.01857

Infecting a Fermi liquid and making it SYK Mobile electrons (c) interacting with SYK quantum dots (f) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! c f Debanjan Chowdhury, Yochai Werman, Erez Berg, T. Senthil, arxiv:1801.06178

Infecting a Fermi liquid and making it SYK Mobile electrons (c) interacting with SYK quantum dots (f) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! c f Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:1712.05026

Infecting a Fermi liquid and making it SYK Mobile electrons (c) interacting with SYK quantum dots (f) with exchange interactions. This yields the first model agreeing with magnetotransport in strange metals! Large N solution (with or without microscopic disorder) yields a marginal Fermi liquid metal, with conductivities of the form: xx(b,t) = 1 B T L T xy(b,t) = B B T 2 H T where the scaling functions interpolate as L,H(b! 0) constant ; L,H(b!1) 1/b 2 This solution exhibits B/T scaling, but the magnetoresistance xx saturates for B T. <latexit sha1_base64="nvhrmartpt4gwjshxqwwoa/+row=">aaaedxicjvpfsyrheb7xtfq2vzr5pdikudekss5ucv6440ambb8kgfhzguntenpqzorr6r67a3sxyf/puz8i73kk6dlduymh6zcuurq+qvrqq7hu5dgmpy61ltuffb6y+qzzxzdfff3n2vq3fzhtwynn0ihjl2lhujhgcyzweffafews8g38/pfg//ygrsojhzwp8aoqmaaupgd/nfpvxufake5qc+du2ayh+1sxnffv44etw+icjixmnhvdqdiaj01jehjyxizot2fcqbihav4spazpoebxtawbouukkh+hqbzqz4yc0uikkkw3xiqotaqci6tgfq86uyw+vmzrlawvk2kncpqvylspx1pyot6b4tzsvtmeklvc1v1ppzxcdjbt6bqihslvltzhc4+llodt8c3qqojrqhtdi06eqgzi3g0wmcf/c7mtou4evhybo8vzs04kp5ym0krlhk0hpbltazrgbohuuvu8lkpmcsg5b7jjxj/unpjq4ku2j2xuifrjhruqfbez155fx0kzr+i6esnr+qwfdo9ipzxzypr343edeewpsg9zcvftx3fombgd7vhushvxzw7exghng42wki1fr00t0osnsrmztct/f1xz36lrzushimoyghz7o7wnsncfho693anvhid7ywpsvxwc/brcvxfozkawogejtb+ixmiq8bqvsjh32q9lvqqfzzikpwwvw1li9ylds29quac7qme7myuf/esyqya1mmh2+jcifovzkyl2pxsk3h99m16e8f1wnb5c1atlilhleak0usagmkxz22frspp4q0jrts5b5silyuvaizn0u6ozzuuiccy3lpg89c+kp56foxlg08b5ohfyc38fbbwdl4hadz4h3wdbqt/yd46ck+asoa9k60prn+wv5dxlv9sv2t325vxra2kr813w6lr3/wu613d1</latexit> Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:1712.05026

Infecting a Fermi liquid and making it SYK Need mesoscopic disorder to obtain linear-in-b magnetoresistance Current path length increases linearly with B at large B due to local Hall effect, which causes the global resistance to increase linearly with B at large B. Exact numerical solution of charge-transport equations in a random-resistor network. (M. M. Parish and P. Littlewood, Nature 426, 162 (2003))

Infecting a Fermi liquid and making it SYK n b /n a =0.8 b/ a =0.8 a =0.1k B T t/100 (B =0.0025) Scaling between B and T (T = t/100) ~ 50 T (a = 3.82 A) Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, Subir Sachdev, arxiv:1712.05026

<latexit sha1_base64="muuuoyjnbgbjqjkic9mruaxqeoe=">aaad5xicfznlb9naemfdhecjrxaoxezusevqiidvh5yo6kxhijw0uhnv6/xyxnuf1u66brd6ftghrnwujnwavgozttocalaynjrz/c9vhk5kkzyp429lne6du/fulz/opxz0+mntldvnh5yplmcxn9lyk4q5lelj2asv8as0yfqi8tg53w/x4wu0thh95gclthxltcgez55cz6tl3ycj5ki3wqmsh/gqnwlw76gqdpxqputwtelzo0qjuxtqjkujktpuryioggiswxnmeuwginmpfupc8ajig2ak6aaqzaalcm+ndia0+akbub1q3j50izjthj4zhuhiw6eqcmdsinywj4peptpgkljnc5yeb7owajsjs0z7psgtomwgr41w8jdt2nltnjnr3+sj3p/lu+z4u+aigdwgwq2hzbpferypsowngfugshjm0wvjlxwb68a2hqn86xu9jbzkpk8q59fa4kltw522ggil2zjhuahnwyik4uz2oagjvwghcplvjghj7maizytr8sde2h7tbeiwrttb22tsbsbdoibhig7pwrq4h2crpyap4zwiffwy506hcemnddupuawbujksgt9noz6sqzlcn23axbycv+qhako0m4tyen990tdl3ewldjnwpxb/xolzb7htyme700bosvi0knmirjlgdytfpn5amp6ckcfonykvemhcagn9exoh9g/o3bfnxoolr0vkezpnoun/rpsa/zbgo8gbqfx+tlb3btgo5ehf9djaj4brtrqxhush0tjinyoo7tsdy27r/dt93p0yv9pzwrx5hv12ul9/armesos=</latexit> This simple two-component model describes a new state of matter which is realized by electrons in the presence of strong interactions and disorder. Can such a model be realized as a fixed-point of a generic theory of strongly-interacting electrons in the presence of disorder? Can we start from a single-band Hubbard model with (or without) disorder, and end up with such two-band fixed point, with emergent local conservation laws?

Electrons in doped silicon appear to separate into two components: localized spin moments and itinerant electrons 10' 0. 10 102 10 10 1.8 10 0.1 1P 2 [ 10-1 10" T(K) F1G. 1. Temperature dependence of normalized susceptibility g/gp, ~; of three Si:P,B samples with dia'erent normalized electron densities, n/n, =0. 58, I.I, and 1.8. Solid lines through data are a guide to the eye. M. J. Hirsch, D.F. Holcomb, R.N. Bhatt, and M.A. Paalanen PRL 68, 1418 (1992) M. Milovanovic, S. Sachdev and R.N. Bhatt, PRL 63, 82 (1989) A.C. Potter, M. Barkeshli, J. McGreevy, T. Senthil, PRL 109, 077205 (2012)

Magnetic excitations are localized (eigenmodes of the spin susceptibility) Charged fermionic excitations are extended (eigenmodes of the electron Hamiltonian) M. Milovanovic, S. Sachdev and R.N. Bhatt, PRL 63, 82 (1989)

<latexit sha1_base64="fo91dwskzs4pr/lzhpdfdyle7si=">aaaemhicdzpnbhrhemehxukctqigjlxkmch2tlsa20hrvfghsjfcbjg9gchjltu9ttst93spu2vwguz+cj6fa9fkmthfuxlhfajznveioqwraqqruv79q+q0ndpwhl+51ole/ulkl2tf9b7+5tur19av3/gtumormihnnh+wyicjlu1ys6fnpscsuknp05oh7f7tbfmgnt3kuqtjaudwz7rcftf0euf7jkw5to1mkvqlou8lrqw9sdb2drkcmpdy5lobwpqftaepbznze/jimnqz81kffkgtoskloc17l1wkmucc4pnzrzwwlxulyf3q5myfbiem1ftr7f4yopx2niiemymta8kclhmpwkctb6nlajit0hjvqkhdq864qaekkpyvwc1ac5cymjuacixmsjxrtjbksnaoykwfq3jgzoo22kauk9/chk3hh48fbony3pnbdn67l8ezkbyscv1cdkaiufmsrkhpqtbcdikz2igqfsefxkkcxehd8mx0ka3wbxiutjf3hwrop5dmpkomyvp0580ujkwgk+kdojqostlhedc7d0thiin1lqg7wwcldyjexiteamg2dsaqmlr0ywc8hm8p4vcohvz+mxqui7o6uwpqnbttpjyu/kitgbrdmrvqxpchife+jce5dqtqw5wifydjur4rd+o90wg/hni4f+/vj1sjhv0who1gzxgv10z0sz5m198lmvnvqzavwrcoduksjxv0rjvpr60kviounnormbylcsfncqjp4u7v3lggsz7lspt+n6pbios6scwyhrx+v7ci+oneucwz/eng27jismpvafaztp/tc4fme1jsajfqerkq1xzwmsbyjnpjihlkds55kzd9wwc6kzrn3vcutudc6amg+lwx2r2oh/gvuxv3hlygwoturd9fw9fonirurt9ft6jjpdovo687f3b+6r7qvun+3f1nfdq5djfzm/podd++b5kayg0=</latexit> Many-body quantum chaos and transport Using holographic analogies, Shenker, Stanford, Maldacena introduced the Lyapunov time, L,thetime over which a generic many-body quantum system loses memory of its initial state (defined via an outof-time-order (OTOC) correlator), and established a shortest-possible time to reach quantum chaos L ~ 2 k B T A related bound was proposed earlier (Sachdev, 1999). The SYK model, and black holes in Einstein gravity, saturate this bound.

<latexit sha1_base64="rhtlzneykppqwlj1lmqohawsjp8=">aaadzxicdvjlb9naelybhsvaaqfx4ccibpvdmw4lsnqrcgcoibupozxi4k7x43hve9faxscnvv4e/4f/wagje5wzj+frbctzhs3jm2++mbjmhbfb8mldav26foxq6jxv+o2ba7fwn26/m6rshptc5uqfxmxglit2rba5npqawrhnebyfvwjix2purijzs9mshwubszekziy5og03cmmccvkli4x4gdmvbczvtcuzsbkqjzasc5gofqyzm4dnrkbmcxaljfigxkcmdoioquiy4blt5fkvtlabyqqkzkbsjdib1uyaumklhldpmcumaqu1pvqyheizc1rfff1+wwnhwtwwgzrynyyuifii0rqyyizsnhw624b2y6jx9pbzjmkuozswzgyzjwiqglhaodp8vwuhzvx02gtrjhfzjosm0kas9rwpdtw9jstruaf5fmayk07dtraawzhkgjradftqvbirs2j8bewvoap1zcap9jqdbgcbvxd0u/unexse7xc6somh87fpln9rtp41tbsvclkf58yywu5q2mhnno0hb/ztgswzp2mjhjapwyfmwm8vyqapyjnaqjr9stgqvh9w1kwwzlrelnlmbp6ozwx4r2xq2bq7riusk4uslxqlvt7fc50v7ultskijrdcubxftlngmk3sezjauu45svocwz+1ejnsn3vofczkjhx7kap83+rv+vh+83d08ofxktercdx46j50dp+mcok+ci6fvcpej+8x95n5f+dxaa91t3vukrrjlmjvohdd68aoobbnx</latexit> Many-body quantum chaos and transport Much theoretical work has examined connections between this chaos bound, and measurable transport co-e cients. The most robust connection is to the thermal di usivity, D T D T v 2 B L (Kapitulnik) where v B is the butterfly velocity at which chaos propagates. A. A. Patel and S. Sachdev, PNAS 114, 1844 (2017) M. Blake, R. A. Davison, and S. Sachdev, PRD 96, 106008 (2017)

<latexit sha1_base64="c70wv0ds5ti9hj5mdninck/7mmq=">aaadrhicfvlbbtnaehutlivqaogrlxetgodi3aauvakptc9iplsocs1kons9hturenfnxkin1d/hn/gkfofxgq4crri8mss5s2cmlgthxrr9wwq1r1y9dn35rufmrzxbd1bx7r6z2huoq64lbu5izreqcodouajpsonmxguex2f7tf74ixortbq4qssjzjksqedmuwi6tvr5hgmmvc0csvejlzrjxuu8gkqy5a64vor+vawzzggtyzhnlwmcmbozogkxi6bck1xulka+iqopewsmknn2yhcwb0eis94ilqhpmbyhdhjhgvnrjvo4tbquiimoj0cn/wh1jth9mrpur7xajghg42y6b4ontzjlguda0dfwejfbxivgj5viunaw9gkjirx5qmpwgxhyxsqwhikj92/mziwdv4hiojosjoagtrsi3pxnofnea3hekkikidqgiwugy0vrnvc+ciy9+eczcl6sbo4r6ey4xhshflaizmyjxjqoxlj5ymzygankfm5luroehvg31+theixdqn/fazyo92yn14otmjrbercww+nq13giosmrhc9i49fwvlpjvacinxuljennlmmrusqm2kk9p6gleeirbfjt6fpndvd0146aswsrgvolzc63f+aa4n9yi+/s/qqwqvqofb8ksn3rlls5zsxrfc3ogteczm1uxtds1hcsrtpwlbm8hjs8dzoree/ddz8lduekfzcb/u0mt8odmhq7vb67t5bqobgfpageb1tbl9gnxgehwtdgrzvwt/wi9bl9td1sj9qty9lw0qlnxvcbtdnvpg4xqg==</latexit> Many-body quantum chaos and transport A quantum hydrodynamical description for scrambling and many-body chaos Mike Blake, Hyunseok Lee, and Hong Liu arxiv:1801.00010 A direct connection was established between the energy di usion mode and the OTOCs measuring chaos. This assumes dominance of the energy di usion mode up to energies of order k B T, which is beyond the hydrodynamic regime. Such a dominance holds in SYK models and holographic theories, and can be expected more generally in ultra-quantum metals without quasiparticle excitations.

Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder)

<latexit sha1_base64="pskis3wp903mnhhacg4i6epd0io=">aaac4nicdvllbhmxfpumrxiedbbkyxehluwjsakmzvebklpgeqshltjr5lhvzfjx2cp7uhbg/qjwic0/xoov4b/wpckkck400plz7vg1j53vsjpmku9rfo36jzu3dm537ty9d3+3++dhe2e85tdlrhl7ljehsmqyokqfz7ufvmuktrply1y/pqfrpnhvcfxdvgkflrnkdao16p5imyikbircjt/brsdtueeeqxw/l0qbok+zfsxtbeegnvjbb3pgwvgt0z1uraxfemqziqyoi4uwvkjsox9oy92vcy3tbdakmmgog6vdojrfsyneg2xolaqpdt78ckof51v+iqmvtmhqla9rsc9mhbbjfr38ejpbi9/nwxr7st85ga8pr7qfw/hboicjutjiejroj+vqku1nft2fqtdcv6crk+bcbjduog+yrclvm493udo+zaxmatssajdv1hdxqz8grtdc2pbppgt229gwyrlvlyxoimhp/tza8l/azgn+ng+krj2c5pedcq9c3rs9vsqkby5qfqdjvoa9ul4yyzhcg5+d8db0gwwtinzed1keoc1i6jafqxdo/8f02h/et94me8cvnkhtkmfkcdkja3jijskjmzap4dgrablh5goip8df4q+xrxg08twif1t87renjowo</latexit> Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder) Half-filled Landau level (Son) Surfaces of (correlated) topological insulators Strange metal state of high (Son) temperature superconductors Pseudogap state of hole-doped cuprates

<latexit sha1_base64="pskis3wp903mnhhacg4i6epd0io=">aaac4nicdvllbhmxfpumrxiedbbkyxehluwjsakmzvebklpgeqshltjr5lhvzfjx2cp7uhbg/qjwic0/xoov4b/wpckkck400plz7vg1j53vsjpmku9rfo36jzu3dm537ty9d3+3++dhe2e85tdlrhl7ljehsmqyokqfz7ufvmuktrply1y/pqfrpnhvcfxdvgkflrnkdao16p5imyikbircjt/brsdtueeeqxw/l0qbok+zfsxtbeegnvjbb3pgwvgt0z1uraxfemqziqyoi4uwvkjsox9oy92vcy3tbdakmmgog6vdojrfsyneg2xolaqpdt78ckof51v+iqmvtmhqla9rsc9mhbbjfr38ejpbi9/nwxr7st85ga8pr7qfw/hboicjutjiejroj+vqku1nft2fqtdcv6crk+bcbjduog+yrclvm493udo+zaxmatssajdv1hdxqz8grtdc2pbppgt229gwyrlvlyxoimhp/tza8l/azgn+ng+krj2c5pedcq9c3rs9vsqkby5qfqdjvoa9ul4yyzhcg5+d8db0gwwtinzed1keoc1i6jafqxdo/8f02h/et94me8cvnkhtkmfkcdkja3jijskjmzap4dgrablh5goip8df4q+xrxg08twif1t87renjowo</latexit> Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder) Half-filled Landau level (Son) Surfaces of (correlated) topological insulators Strange metal state of high temperature superconductors Pseudogap state of hole-doped cuprates

SM FL YBa 2 Cu 3 O 6+x Figure: K. Fujita and J. C. Seamus Davis

SM FL YBa 2 Cu 3 O 6+x Deconfinement transition of a gauge theory? Figure: K. Fujita and J. C. Seamus Davis

<latexit sha1_base64="pskis3wp903mnhhacg4i6epd0io=">aaac4nicdvllbhmxfpumrxiedbbkyxehluwjsakmzvebklpgeqshltjr5lhvzfjx2cp7uhbg/qjwic0/xoov4b/wpckkck400plz7vg1j53vsjpmku9rfo36jzu3dm537ty9d3+3++dhe2e85tdlrhl7ljehsmqyokqfz7ufvmuktrply1y/pqfrpnhvcfxdvgkflrnkdao16p5imyikbircjt/brsdtueeeqxw/l0qbok+zfsxtbeegnvjbb3pgwvgt0z1uraxfemqziqyoi4uwvkjsox9oy92vcy3tbdakmmgog6vdojrfsyneg2xolaqpdt78ckof51v+iqmvtmhqla9rsc9mhbbjfr38ejpbi9/nwxr7st85ga8pr7qfw/hboicjutjiejroj+vqku1nft2fqtdcv6crk+bcbjduog+yrclvm493udo+zaxmatssajdv1hdxqz8grtdc2pbppgt229gwyrlvlyxoimhp/tza8l/azgn+ng+krj2c5pedcq9c3rs9vsqkby5qfqdjvoa9ul4yyzhcg5+d8db0gwwtinzed1keoc1i6jafqxdo/8f02h/et94me8cvnkhtkmfkcdkja3jijskjmzap4dgrablh5goip8df4q+xrxg08twif1t87renjowo</latexit> Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder) Half-filled Landau level (Son) Surfaces of (correlated) topological insulators Strange metal state of high temperature superconductors Pseudogap state of hole-doped cuprates

<latexit sha1_base64="8bjcuulnfkn/rzb5/mvhsg1uero=">aaadf3icfvjnb9naef2brxi+mscry4oiivpqpepatltaovxqkqitfefrej22v13vwrvr0gd1j3dgcj+de+lkkv/bx2a2maggye5pm2/mzbzdpjlcuij6fosxll+5em3reufgzvu3t7u9o6+trg2hkddsm5oewzbcwdqjj+gkmsdkrmjxcvru14+xykzq6pvbvtavwa5ejjhzmfr0gl6cqc5uixyu4i2cd2kpos9qwijuafxgdet1rl0bngd1dh5ps6kckzoatdfuvba2gjtcehqvynpimoiufhqh3488bviwrcjzu55y25pjyrxk8iislns5fhlud1k4kkpcyi/bjwkocgx2gnj1xvxf6xer9uivqa5n4n2svloohyez9jikgup/obdo9qnbnj6m9napb6pjeijgfzcarheddqj19ekbr4vu9zjvvpalcsmsnq2jys0bzlboekdrcxxjpyyhgulfsrdzzv125/qbzlka4tkz9of67mwohpxwrsoemsvzhf2z5pn/q81ql+3pg6gq2qevg6gsltrp6j8cmmsao7lcwdbwuf4wwzgajzms4f9susua2mgzeyns1glgg7fq3qgfntb/g+lo8ggqvrz1d560vm2re+q+euigzi8ckenyrkaeb2fb++bd8df8f34kp4dfntqwahvukt8i/pod4sh/ea==</latexit> Non-zero density of fermions strongly coupled to gauge fields, (in the presence of disorder) Distinct phases of the gauge theory can be distinguished even in the presence of disorder Is the usual confinement/higgs/deconfinement criterion general enough in the presence of disorder? Novel critical points or phases?

A solvable model Fractionalize the electron (c i, i =1...N, =1...M) into an orthogonal fermion f i and an Ising spin i z = ±1: c i = This introduces a Z 2 gauge invariance z i f i z i! i z i, f i! i f i The solvable model is (closely related to) the N!1, M!1limit of H = X µf i f i g i x i + p 1 X z z t ij i j f i f j + 1 X p J ij f i f i f j f j NM NM i,j (Senthil, Metlitski, Vishwanath, Sachdev ) where t ij and J ij are random numbers. What is the fate of the Z 2 gauge theory as a function of the coupling g? i,j

A solvable model Fractionalize the electron (c i, i =1...N, =1...M) into an orthogonal fermion f i and an Ising spin i z = ±1: c i = This introduces a Z 2 gauge invariance z i f i z i! i z i, f i! i f i The solvable model is (closely related to) the N!1, M!1limit of H = X µf i f i g i x i + p 1 X z z t ij i j f i f j + 1 X p J ij f i f i f j f j NM NM i,j (Senthil, Metlitski, Vishwanath, Sachdev ) where t ij and J ij are random numbers. What is the fate of the Z 2 gauge theory as a function of the coupling g? i,j

<latexit sha1_base64="du47f7vjqkj5ijvhrhydnbqckp0=">aaachhicdvfdb9mwfhxcx0bhr/l64swiq/bclhbtonhae/da45aom1sxcupcjnyco7kdjrjv/e5+am/8bdy0lqdblswdnxpupdjxuklhxrx/d8irv69d39m90dm7eev2ne7dex+trg3hcddsm7meleqhcokek3hwgyqykxianl9z6acxakzq6onbvdgrivciexycp+bdbyzbxkigo3jolp23ylxk/lguvow/+5ixcvqzn8l5hum1cyxotfkwrafyacryzz/bpzlueq2lofk6dbcasyiv4dpx1ljhgnuyqnqboo/24mh0ndgchti4itvxyhgwho9j2t8wpbkzk3n3j0s1r0u/zivyo+3hlzs1yhyixgwh1ryr4oeq49rdbsxawdmwtarppjpstbv/lkmt+/tga6w1izlxzhjcyf/wvus/tgntsqnzi1rvo1r8hztvkjpnv63tvbjkti48ghu7lbdggpso/cwl/unu7oqgofzilkxqc5phnbjq1dc2bvp/mblel6l4/ab3/hpt1s55rb6tz6rpxusyvcmnzei4+rhsbq+ch+fo+dw8cedraxhsdu6tpyz89qtekspi</latexit> <latexit sha1_base64="uipqfli2sv3p+6x1xepmimn1ykw=">aaacjhicdvfdi9nafj3erzv+bhufvrgssj5odtrsdkweruh2cywtu9cu7mrykww7myszg9cs+uxv9eeif8fj0wuvvtbwoofce4dz40pji4x99/wbn2/dvrnzn7h3/8hd3d6jx59twrsbm1gq0pzh3iksgmyoucf5zyaxsykz+pjdq599awnlqu9xvcgi4jmwqrqchbxsfyt0kxucgopthaxqaakuqsh1krxu2cgxzdjlq9zteexjgile23jhujrcw9moozhgfyb2ugldceg6v8b14uilc2gcvxd1ejn4f7+tw2wvz0i2ngyni9qc4wq8cebwxaam0uhintun2zpz9n5gssnqwv1ckg7tfmaqxdtcuokk1kfuw6i4uoqzzb3uvac7adabreklxyq0ly17gumg/b2j4yw1qyj2zojjbv/wwvjf2rzg9hdrsf3vcfp0i9jausxpmz5npagbauua75kgiuegc3q3ciil7oa6w7yjel7iluzcnmyutqveu4suy6d/b7nh+czkn4b9o/fbqhbie/kcvcqdmivh5jickbkr5ie35z31nvm7/th/67/rrl637dkjf5t/8rdolmbo</latexit> <latexit sha1_base64="z/w7rvojjt1g12b0lgxypniawlc=">aaacdxicdvfna9taffyp+ar6ebc5fsjsu6wxkrlrxmktnjcce6ibgowap9wtvgs1wnzxbrzhvxnir+i1hx6ythvos/ngyziznw9meyw4svf05/lp1ty3nreebs+ev3i53xr1+qspk81wyepr6ssedaoucwi5fxipnekrclxirk4w+sv31iax8oudkrwxkeuecqbwuzowihpmuawzsot6hpxobp0opp7ypddutv12gmdbj+vqhjrayyjilllgt9riw/mcvt08yglilondhumrhyx7h72d/ggnwmg5dvq/dqadihybpk2aozu0fszpyarcrtmbxoy6kbljgrqlfzgp4sqganyfoy4clfcggdflzub0nwnsmpxapwnpkv1zo4bcmfmrogcbdmr+1rbk/7rrzbpdcc2lqixktjquvylaki5qpinxykyyoqcriiibggbmonbjbt1pydxo69jitf3bu3en7of7xc4aeqibpg6gvfaojm577epptvvb5a15sz6qlhmqy3jkzsiqmhjlfnvr3ob3y9/1o/77ldx3mp0d8tf4e/f+a7/s</latexit> <latexit sha1_base64="2mrnkh2ivjctmqnorg3ix6n58gq=">aaacchicdvdltgjbejz1ifhcpxqzccae1gvr9eb04letv0iaknmhgymzs5uzxpvs+aipxvuzpbmv/ovf4s84iczqtjjoklxd6e4kyikmet6bmzu9mzs3n1nili4tr6zm1tyvtzrodj6pzktratmghqifbuqoxxpygeiobvcni792ddqisf3giizwyhpkdavnacw/unztfdq5vofuh5yoygfuc70xlcnvvsovjxynsp5mcnbovtc7eu9cumglm6zr9gjspuyj4bkg2wziigb8ivwgyaliizhwoj52slet0qhdsntssmfq94muhcymwsb2hgz75rc3ev/yggl2d1upuhgcopjnom4ikuz09dntca0c5casxrwwt1lez5pxtplkmwzsekqh/bsjcis3omp3pgv3x6ihtegrbvo/8uvukeudl/lv40lugbjjtsgokzikqzjtckz8wokg9+sbpdp3zppz7lx8tk45k5kn8gpo6wf5qzo+</latexit> A solvable model There is no confining/higgs phase, but there is a phase transition between a deconfined phase and a critical-higgs phase. Critical-Higgs point. f gapless and critical. z gapless and critical. Deconfined phase: a critical orthogonal metal. f gapless and critical. z gapped. Critical-Higgs phase. f gapless and critical. z gapless and critical. g c 1/g (Wenbo Fu, Yingfei Gu, SS, G. Tarnopolsky)

<latexit sha1_base64="du47f7vjqkj5ijvhrhydnbqckp0=">aaachhicdvfdb9mwfhxcx0bhr/l64swiq/bclhbtonhae/da45aom1sxcupcjnyco7kdjrjv/e5+am/8bdy0lqdblswdnxpupdjxuklhxrx/d8irv69d39m90dm7eev2ne7dex+trg3hcddsm7meleqhcokek3hwgyqykxianl9z6acxakzq6onbvdgrivciexycp+bdbyzbxkigo3jolp23ylxk/lguvow/+5ixcvqzn8l5hum1cyxotfkwrafyacryzz/bpzlueq2lofk6dbcasyiv4dpx1ljhgnuyqnqboo/24mh0ndgchti4itvxyhgwho9j2t8wpbkzk3n3j0s1r0u/zivyo+3hlzs1yhyixgwh1ryr4oeq49rdbsxawdmwtarppjpstbv/lkmt+/tga6w1izlxzhjcyf/wvus/tgntsqnzi1rvo1r8hztvkjpnv63tvbjkti48ghu7lbdggpso/cwl/unu7oqgofzilkxqc5phnbjq1dc2bvp/mblel6l4/ab3/hpt1s55rb6tz6rpxusyvcmnzei4+rhsbq+ch+fo+dw8cedraxhsdu6tpyz89qtekspi</latexit> <latexit sha1_base64="uipqfli2sv3p+6x1xepmimn1ykw=">aaacjhicdvfdi9nafj3erzv+bhufvrgssj5odtrsdkweruh2cywtu9cu7mrykww7myszg9cs+uxv9eeif8fj0wuvvtbwoofce4dz40pji4x99/wbn2/dvrnzn7h3/8hd3d6jx59twrsbm1gq0pzh3iksgmyoucf5zyaxsykz+pjdq599awnlqu9xvcgi4jmwqrqchbxsfyt0kxucgopthaxqaakuqsh1krxu2cgxzdjlq9zteexjgile23jhujrcw9moozhgfyb2ugldceg6v8b14uilc2gcvxd1ejn4f7+tw2wvz0i2ngyni9qc4wq8cebwxaam0uhintun2zpz9n5gssnqwv1ckg7tfmaqxdtcuokk1kfuw6i4uoqzzb3uvac7adabreklxyq0ly17gumg/b2j4yw1qyj2zojjbv/wwvjf2rzg9hdrsf3vcfp0i9jausxpmz5npagbauua75kgiuegc3q3ciil7oa6w7yjel7iluzcnmyutqveu4suy6d/b7nh+czkn4b9o/fbqhbie/kcvcqdmivh5jickbkr5ie35z31nvm7/th/67/rrl637dkjf5t/8rdolmbo</latexit> <latexit sha1_base64="z/w7rvojjt1g12b0lgxypniawlc=">aaacdxicdvfna9taffyp+ar6ebc5fsjsu6wxkrlrxmktnjcce6ibgowap9wtvgs1wnzxbrzhvxnir+i1hx6ythvos/ngyziznw9meyw4svf05/lp1ty3nreebs+ev3i53xr1+qspk81wyepr6ssedaoucwi5fxipnekrclxirk4w+sv31iax8oudkrwxkeuecqbwuzowihpmuawzsot6hpxobp0opp7ypddutv12gmdbj+vqhjrayyjilllgt9riw/mcvt08yglilondhumrhyx7h72d/ggnwmg5dvq/dqadihybpk2aozu0fszpyarcrtmbxoy6kbljgrqlfzgp4sqganyfoy4clfcggdflzub0nwnsmpxapwnpkv1zo4bcmfmrogcbdmr+1rbk/7rrzbpdcc2lqixktjquvylaki5qpinxykyyoqcriiibggbmonbjbt1pydxo69jitf3bu3en7of7xc4aeqibpg6gvfaojm577epptvvb5a15sz6qlhmqy3jkzsiqmhjlfnvr3ob3y9/1o/77ldx3mp0d8tf4e/f+a7/s</latexit> <latexit sha1_base64="2mrnkh2ivjctmqnorg3ix6n58gq=">aaacchicdvdltgjbejz1ifhcpxqzccae1gvr9eb04letv0iaknmhgymzs5uzxpvs+aipxvuzpbmv/ovf4s84iczqtjjoklxd6e4kyikmet6bmzu9mzs3n1nili4tr6zm1tyvtzrodj6pzktratmghqifbuqoxxpygeiobvcni792ddqisf3giizwyhpkdavnacw/unztfdq5vofuh5yoygfuc70xlcnvvsovjxynsp5mcnbovtc7eu9cumglm6zr9gjspuyj4bkg2wziigb8ivwgyaliizhwoj52slet0qhdsntssmfq94muhcymwsb2hgz75rc3ev/yggl2d1upuhgcopjnom4ikuz09dntca0c5casxrwwt1lez5pxtplkmwzsekqh/bsjcis3omp3pgv3x6ihtegrbvo/8uvukeudl/lv40lugbjjtsgokzikqzjtckz8wokg9+sbpdp3zppz7lx8tk45k5kn8gpo6wf5qzo+</latexit> A solvable model There is no confining/higgs phase, but there is a phase transition between a deconfined phase and a critical-higgs phase. Distinct exponents Critical-Higgs point. f gapless and critical. z gapless and critical. Deconfined phase: a critical orthogonal metal. f gapless and critical. z gapped. Critical-Higgs phase. f gapless and critical. z gapless and critical. g c 1/g (Wenbo Fu, Yingfei Gu, SS, G. Tarnopolsky)

<latexit sha1_base64="g0am6ho2e7vx53epw3xykyamo98=">aaaeghicfvplbhmxfj0mpep5twxj5oowcaqstrkiwq4qeiq7ijw0ulnvjudoxorhnvqrmizyjszywmewqmzz8rx8atezteafwlj0df/n3ovrysgfdxh8fanrvhl12vxlgys3b92+c3d1bf2n1d5w7hmtttkamotskow74sqefqzzppr4oby/cp7dcrortdpwzyenorspkqrohjlo1xrrgygohkqew1y8w9nkicdypsljre8v6btoploiymyjltgcwtmvdahrjfyj4nqtvajoawopp4akzagkh5tinzgg5drbrelxcpiumfahoiftdgumsejb1faezgldhmcpqjfmqge0r0urimidjrdbfimc5ytypoduoexckjzl8ix0lakpsqskquawvawwsn6kjgotg5mgozgvqw39r24dfs7nstunvj7tz8zw2iyayby+i+ejwqjp9jphvd1h5xy+bzudcfjqf7zje8gezygpz72jpqfczxoapzyl6bqstlxgibp2ih1yvolsdoyi9ckbf9gikw1gvahczmorbi0sw0tj5khy3aiktlelvzbgdhujbsxd9vbtdhciu504jtbr9+jef9pkcwcjwpz909ufg0rzh9i4znyet+pcnvslhagv8hylxsdshmcefcvrnltz5z3bq7ikkgpdvzmyw3/pqfhubzkpktjnlroxfch4n9+xd+mzk0qoggaqee2u+npk9bmgor3mtpyewp2ewdnmgkcfo0ow6topkcuqgco3bios4qm6rz5qm5rq+rjg36dfat1vxa87gzu7i1etr/ejb9gjqb1trzvrxrqf9spekbsfgh8bn5rvm5+bx5pf69dg0ilnxvthax77cy5gxom=</latexit> Thoughts on field theories of ultra-quantum metals Breakdown of quasiparticles requires strong coupling to a low energy collective mode In all known cases, we can write down the singular processes in terms of a continuum field theory of the fermions near the Fermi surface coupled to the collective mode. In all known cases, the continuum critical theory has a conserved total (pseudo-) momentum, P ~, which commutes with the Hamiltonian. This momentum may not be equal to the crystal momentum of the underlying lattice model.

<latexit sha1_base64="szc+obw1wr/hdkokgkvymuoxd94=">aaaefhicdzpfbxtfemevsyfiwkjhkzcrcave1kdzqii8lsihxfoqelipf0xrvfhdkhuzl/1h1z35d+wbv4e/awztoyyivjppbnz2vjofnz11hnwoit8f7q2gh3z40eopr588efrpz/vppv/n2+g0xmhrrhszux4nmv4ecgbfda5vozn4obv9me1fltb5snwevh1et6pmmpnwqvw3z/yw5qxr4p4ctvqo16mywfcdb2o5buvhxoqgbvpygbr/zf0cnsbzeg0l4x0uyzhcnuhq4ryryyapoufagzo4ktkgo3pi4wjjr3kdg0mv3dgcwgrsfopxjsimwn6sw6u0zeqkxwqux7dkb7ocd+jsoofzrrz3qloaac6q5c/gurmnbhkezhyq0duriwsyitrun5lke9frkaekq3rgmldysyu5ulb4kia7qdx1ykllbv3osfw8giuam7llu2tovcd4qxty8usnda4m3uwsje6x76wlqdvbsrxszz0ldvnrjvolycfkravibwiljvqvpcsreiev4lr6jd6sjoceocgf4gcxvtwq60bb8eku7vmkowukgnsmlgtqpuycxqnw0ac60d/quz8mexiv9aiojmwvzwvoogljxqmgtmuuz4uuuipamkk6keumxjpx+fib+khert5p2c3+qzexj9ox3xydgmxjcvgicto9lu5pycqeta6y3tq72f+zrkyoruyrnsr7q2nrhet+dzeyttjyp/stqvfktfyt+ut+80dw8fw8fcytk0/obbz3t/sq9x7vzisyvahx/95lzv/au4ph/t11t9zfgky3qvnoeqt02grb4iqjvphajjforjmzzbmauelrhizxoenlgg/dkirr6u/yu+k1epoha/y/cxgcf58xvx4fvhq9q/u4+zl7kjvmptnl7fx2c3awxwr674/bypbk8htw1/d58ovhzbu692h35ovswrp++zf7nx3g</latexit> Thoughts on field theories of ultra-quantum metals As long as J, ~ P ~ 6=0(where J ~ is the electrical current) the d.c. resistivity of the critical theory is exactly zero. This is the case even though the electron self energy can be highly singular and there are no fermionic quasiparticles (many well-known papers on non-fermi liquid transport ignore this point.) We need to include additional (dangerously) irrelevant umklapp corrections to obtain a non-zero resistivity. Because these additional corrections are irrelevant, it is di cult to see how they can induce a linear-in-t resistivity.

Thoughts on field theories of ultra-quantum metals Theories of metallic states without quasiparticles in the presence of disorder Well-known perturbative theory of disordered metals has 2 classes of known fixed points, the insulator at strong disorder, and the metal at weak disorder. The latter state has long-lived, extended quasiparticle excitations (which are not plane waves). Needed: a metallic fixed point at intermediate disorder and strong interactions without quasiparticle excitations. Although disorder is present, it largely self-averages at long scales. SYK models