The progress and prospect on charm mixing

Similar documents
Charm mixing and CP violation at LHCb

Recent BaBar results on CP Violation in B decays

D 0 -mixing and CP Violation in Charm at Belle

PoS(EPS-HEP2017)662. Charm physics prospects at Belle II

Measurements of CPV and mixing in charm decays

Measurement of the CKM angle γ at LHCb

LHCb Semileptonic Asymmetry

Results from B-Physics (LHCb, BELLE)

LHCb Physics and prospects. Stefano Perazzini On behalf of LHCb Collabora4on MENU nd June 2010

A. J. Schwartz Physics Department, University of Cincinnati, Cincinnati, Ohio USA

Belle II perspectives on Unitarity Triangle sides and angles

PoS(DIS 2010)166. Charm physics at BaBar and Belle. Diego Milanés. Universitat de Valencia - IFIC

Future Belle II experiment at the KEK laboratory

Amplitude analyses with charm decays at e + e machines

LHCb status. Marta Calvi. for the LHCb Collaboration. 103 rd LHCC meeting University Milano-Bicocca and INFN

LHCb results relevant to SUSY and BSM physics

PoS(CKM2016)113. Measurement of γ from B meson decay to D ( ) K ( )

Hadronic Charm Decays: Experimental Review

D 0 -D 0 mixing and CP violation at LHC

arxiv: v2 [hep-ex] 22 Dec 2013

Marcello A. Giorgi. Università di Pisa & INFN Pisa La Biodola May 30, 2011 XVII SuperB Workshop and Kick off Meeting

CharmSpectroscopy from B factories

Recent results from the LHCb

Measurement of CP violation in B J/ψK 0 S. decays. Frank Meier TU Dortmund. XXIX Rencontres de Physique de la Vallée d Aoste March 1 7, 2015

Flavour Physics at hadron machines

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. CMS prospects for heavy flavour physics

Advances in Open Charm Physics at CLEO-c

Rare Hadronic B Decays

Latest results on B DK/Dπ decays from Belle

Cracking the Unitarity Triangle

RESULTS FROM B-FACTORIES

D 0 Mixing and CP Violation at the BABAR Experiment

LHCb: first results and prospects for the run

B Factories. Alan Watson University of Birmingham, UK

arxiv: v1 [hep-ex] 10 Aug 2011

arxiv: v3 [hep-ex] 11 Feb 2013

Heavy Flavour Physics at the LHC. Lessons from the first phase of the LHC DESY 27 September 2012

arxiv: v1 [hep-ex] 14 Sep 2015

Mixing and CP violation

Recent CP violation measurements

CP Violation at the LHC - workshop 2017

Charm physics at LHCb

Rencontres de Moriond - EW Interactions and Unified Theories La Thuile, March 14-21, 2015

CP violation and rare decays at LHCb. Jibo HE (UCAS), for the LHCb collaboration Presented at CLHCP PKU

New Physics search in penguin B-decays

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

Optimising sensitivity to γ with B 0 DKπ,

arxiv: v1 [hep-ex] 14 Oct 2011

Summary of WG5. Gianluca Cavoto. INFN Roma La Sapienza. On behalf of WG5 conveners Robert Fleischer Karim Trabelsi Jure Zupan

(pp! bbx) at 7 and 13 TeV

Experimental prospects for B physics and discrete symmetries at LHC and future projects

CP Violation Studies at DØ

Flavour Tagging at LHCb

Weak Decays, CKM, Anders Ryd Cornell University

Hiroyuki Sagawa KEK OHO 1-1, Tsukuba, Ibaraki, Japan

Direct CP violation in two-body decays experiment Towards the Ultimate Precision in Flavour Physics

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Outline: Absolute Charm Branching Fractions D0 and D+ Rare and inclusive modes Final states with KS or KL. Anders Ryd Cornell University Presented at

(Heavy Quark) Flavour Physics at LHC

Decadimenti senza charm e misure di α alle B-Factory

Hadronic B Decays at LHCb

Detecting new hadrons Excited QCD 2010

CP Violation in B Decays at Belle

arxiv: v2 [hep-ex] 8 Aug 2013

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

CP Violation in the B(s) meson system at LHCb Julian Wishahi on behalf of the LHCb collaboration

Beyond SM Physics at a CLEO Charm Factory (some food for thought) Mats Selen, UIUC, May/5/2001

Perspectives in B Physics: Results from LHCb

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Rare B decays at CMS

Superb prospects: Physics at Belle II/SuperKEKB

Evidence for D 0 - D 0 mixing. Marko Starič. J. Stefan Institute, Ljubljana, Slovenia. March XLII Rencontres de Moriond, La Thuile, Italy

arxiv: v1 [hep-ex] 23 Jul 2013

LHCb Overview. Barbara Storaci on behalf of the LHCb Collaboration

CP Violation sensitivity at the Belle II Experiment

arxiv: v1 [hep-ex] 15 Jan 2019

CP violation in quark flavor physics

ISR physics at BABAR

from B -Factories A. Oyanguren (IFIC U. Valencia) BaBar Collaboration

A.Mordá. INFN - Padova. 7 th July on behalf of the Belle2 Collaboration. CP Violation sensitivity at the Belle II Experiment

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr.

Measurements of CP violating phases in B decays at LHCb

Experimental Signatures for Lorentz Violation (in Neutral B Meson Mixing)

Recent Results from the BESIII Experiment. Ryan Mitchell Indiana University Miami 2011 December 17, 2011

Searches for CP violation in decays from BABAR and Belle

Recent Heavy Flavors results from Tevatron. Aleksei Popov (Institute for High Energy Physics, Protvino) on behalf of the CDF and DØ Collaborations

e e with ISR and the Rb Scan at BaBar

R. Mureşan. University of Oxford On behalf of LHCb Collaboration. Prepared for the CERN Theory Institute "Flavour as a Window to New Physics at LHC"

Tau Physics: Status and Prospects. George Lafferty The University of Manchester

V.V. Gligorov, CERN On behalf of the LHCb collaboration 25th February 2013

D semi-leptonic and leptonic decays at BESIII

Measurement of γ from B DK and related modes at LHCb

HQL Virginia Tech. Bob Hirosky for the D0 Collaboration. Bob Hirosky, UNIVERSITY of VIRGINIA. 26May, 2016

The LHC Heavy Flavour Programme

Impact of Charm Physics on CKM. David Asner Carleton University

Study of Baryon Form factor and Collins effect at BESIII

Antimo Palano INFN and University of Bari, Italy On behalf of the LHCb Collaboration

STATUS OF CKM ANGLE MEASUREMENTS, A REPORT FROM BABAR AND BELLE

Flavour physics in the LHC era

arxiv: v1 [hep-ex] 2 Dec 2010

Transcription:

BINP The progress and prospect on charm mixing Vitaly Vorobyev Budker Institute of Nuclear Physics and Novosibirsk State University On behalf of Belle & Belle II Collaborations 2 nd international workshop on High Intensity Electron-Positron Accelerator 19 th March 2018, UCAS, Beijing

The charm mixing parameters Mass eigenstates หD 1,2 ൿ = pȁd 0 ± qȁഥd 0, p 2 + q 2 = 1 The charm mixing parameters x m 2 m 1 Γ, y Γ 2 Γ 1 2Γ The observable parameter λ f q p Charm forms the only neutral meson system with the heavy up quark, Γ Γ 1 + Γ 2 2 ҧ A f A f, A f f H D 0, ҧ A f f H ഥD 0 CP violation Direct: f H D 0 CP f H ഥD 0 In mixing: q/p 1 In interference between mixing and decay: Im λ f 0 Long distances (dominant) Short distances The Standard Model expectation x y sin 2 θ C SU 3 f breaking 2 Clear signals of new dynamics: y x 1% CP violation > 10 3 2

Experimental status arxiv:1612.07233 x = 0.32 ± 0.14 % y = 0.69 +0.06 0.07 % +0.08 q/p = 0.89 0.07 +9.9 arg q/p = 12.9 8.7 No CPV The first evidence by Belle and BaBar Phys. Rev. Lett. 98, 211802 (2007) Phys. Rev. Lett. 98, 211803 (2007) Charm mixing is well established No CP violation observed in charm yet No mixing 3

Experimental landscape D ഥD threshold pp collisions Asymmetric e + e @ Υ 4S 4

Charm mixing observables and facilities Classes of observables (I. Bigi) Wrong-sign D 0 decays Semileptonic Hadronic (D 0 K + π time ind.) Non-exponential D 0 decay rate evolutions (D 0 K + π time dep.) Different D 0 lifetimes in different channels (D 0 h + h ) D 0 and ഥD 0 produced in e + e D 0 ഥD 0 decaying into two seemingly identical final states LHCb B factory c-τ factory Charm production Coherence Non-coherent Coherent CMS boost γβ D 1 γβ D 1 γβ D 1 5

Charm decay rates Time-dependent Incoherent D ± Dπ ±, B DX, e + e ccҧ D ഥDX, pp ccx ҧ Boost LHCb: γβ D 1 f H D 0 t 2 = e Γt A f 2 1 y Reλf + x Imλ f Γt + O x 2, y 2 f H D 0 2 A f 2 1 y Reλf x Imλ f + O x 2, y 2 B factory: γβ D 1 c-τ factory: γβ D 1 Time-integrated Coherent (at rest) e + e D 0 ഥD 0, C+: D 0 ഥD 0 γ, C : D 0 ഥD 0 π 0 ij H D 0 ഥD 0 i H D 0 j H ഥD 0 + C i H ഥD 0 j H D 0 ij H D 0 ഥD 0 2 A 2 2 i A 2 j ζc + 1 + C x Im ξ C ζ C y Re ξ C ζ C + O x 2, y 2 ξ C p q 1 + Cλ iλ j, ζ C p q (λ j + Cλ i ) 6

The progress Selected experimental results 7

D 0 Kπ time-dependent WS Γ D 0 t f WS = e t τ A f 2 RD + R D y t τ + 1 2 R M t τ 2 x x cos δ Kπ + y sin δ Kπ R + D Br D0 K + π y Br D y cos δ Kπ x sin δ 0 K π + Kπ R M x 2 + y 2 /2 A D R D + R D R + D + R D BaBar [1]: 384 fb 1, D + D 0 π + y = 9.7 ± 4.4 ± 3.1 10 3 R D = 3.03 ± 0.19 10 3 Belle [2]: 976 fb 1, D + D 0 π + y = 4.6 ± 3.4 10 3 R D = 3.53 ± 0.13 10 3 LHCb [3]: 5 fb 1, D + D 0 π + y = 5.28 ± 0.45 ± 0.27 10 3 x 2 = 0.039 ± 0.023 ± 0.014 10 3 R D = 3.454 ± 0.028 ± 0.014 10 3 A D = 0.1 ± 9.1 10 3 1.00 < p/q < 1.35 @ 68.3% CL [3] x 2 [10 3 ] [3] [1] Phys. Rev. Lett. 98, 211802 (2007) (BaBar) [2] Phys. Rev. Lett. 112, 111801 (2014) (Belle) [3] Phys. Rev. D97, 031101(R) (2018) (LHCb) 8

Measurements with quantum correlations The method exploits the difference between correlated (double tagged) and uncorrelated (single tagged) decay rates CLEO-c [1]: 0.82 fb 1 @ ψ(3770), fit of 261 yields y = 4.2 ± 2.0 ± 1.0 % R D = 0.533 ± 0.107 ± 0.045 % cos δ Kπ = +0.81 ± 0.22 ± 0.07 sin δ Kπ = 0.01 ± 0.41 ± 0.04 BESIII: 2.92 fb 1 @ ψ(3770) y and R D are taken as an external input cos δ Kπ = 1.02 ± 0.11 ± 0.06 ± 0.01 Time-integrated C = 1 correlations Γ i, j i D 2 j D 1 i D 1 j D 2 2 + O x 2, y 2 [1] [1] Phys. Rev. D86, 112001 (2012) (CLEO-c) [2] Phys. Lett. B 734, 277 (2014) (BESIII) 9

Time-dependent D 0 h + h y CP η CP Γ D 0 f + Γ ഥD 0 f 2Γ D 0 K π + 1 y cos φ 1 2 A mx sin φ y CP τ D0 K π + τ D 0 K K + 1 LHCb [1]*: 29 pb 1, D + D 0 π + y CP = 0.55 ± 0.63 ± 0.41 % BaBar [2]: 468 fb 1, D 0 K π ±, K K +, π π + y CP = 0.72 ± 0.18 ± 0.12 % Belle [3]: 540 fb 1, D 0 K π ±, K K +, π π + y CP = 1.31 ± 0.32 ± 0.25 % [1] [2] [1] JHEP 04, 129 (2012) (LHCb) [2] Phys. Rev. D87, 012004 (2013) (BaBar) [3] Phys. Rev. Lett. 98, 211803 (2007) (Belle) *There are many other LHCb publications on CP violation in the D 0 h + h modes 10

D 0 f CP with quantum correlations y CP 1 4 B D CP l B D CP+ l B D CP+ l B D CP l, B D CP l = N CP±;l N CP± ε CP± ε CP±;l BESIII [1]: 2.92 fb 1 @ 3.773 GeV y CP = 2.0 ± 1.3 ± 0.7 % Single tag: D f CP Quantum correlated D ഥD f CP + Klμ Systematic uncertainty has statistical origin [1] Phys. Lett. B744, 339 (2015) 11

D 0 K S 0 π + π Dalitz plot analysis Time-dependent Dalitz plot analysis P D t, m + 2, m 2 Γe Γt A D 2 Γt Re A D A ഥD y + ix Sensitivity to the charm mixing parameters due to the strong phase variation over the Dalitz plot A m + 2, m 2 from a D 0 K S 0 π + π decay model BaBar [1]: 468.5 fb 1, D + D 0 π + x = 0.16 ± 0.23 ± 0.12 ± 0.08 % y = 0.57 ± 0.20 ± 0.13 ± 0.07 % Belle [2]: 921 fb 1, D + D 0 π + x = 0.56 ± 0.19 ± 0.08 ± 0.08 % y = 0.30 ± 0.15 ± 0.05 ± 0.07 % q/p = 0.90 ± 0.16 ± 0.05 ± 0.06 arg q/p = 6 ± 11 ± 3 ± 4 The most precise single measurement of the charm mixing parameters [1] [2] [1] Phys. Rev. Lett. 105, 081803 (2010) (BaBar) [2] Phys. Rev. D89, 091103 (2014) (Belle) 12

Model-independent Dalitz plot analysis A way to eliminate (difficult to control) model dependency of a multibody decay analysis Binned time-dependent Dalitz plot analysis [1,2] P D t, i e Γt K i Γt K i K i C i y + S i x P ഥD t, i e Γt K i Γt K i K i C i y S i x C i and S i are measured in coherent D 0 ഥD 0 pair decays [3] [3] CLEO-c [3] LHCb [4]: 1.0 fb 1 @ 7 TeV, D + D 0 π + x = 0.86 ± 0.53 ± 0.17 % y = +0.03 ± 0.46 ± 0.13 % [1] Phys. Rev. D68, 054018 (2003) [2] Phys. Rev. D82, 034033 (2010) (Bondar et al.) [3] Phys. Rev. D82, 112006 (2010) (CLEO-c) [4] JHEP 04, 033 (2016) (LHCb) The first model-independent measurement of the charm mixing parameters Z i = Di A D A ഥD dm 2 2 + dm Di A 2 D dm 2 + dm 2 Di A ഥD 2 dm 2 + dm2 C i = Re Z i, S i = Im Z i 13

D 0 K S 0 π + π with quantum correlations Coherent C = ±1 and non-coherent decays e + e ψ 4040 D ഥD Coherent C = 1: D 0 ഥD 0 D 0 ഥD 0 π 0 M ij = K i K j + K i K j 2 K i K j K i K j C i C j + S i S j Coherent C = +1: D 0 ഥD 0 D 0 ഥD 0 γ M + ij = K i K j + K i K j 2 K i K j K i K j C i C j + S i S j +2K j K i K i yc i xs i + 2K j K i K i yc i + xs i +2K i K j K j yc j xs j + 2K i K j K j yc j + xs j Incoherent D D + D D 0 π + K i = K i + K i K i yc i + xs i [1] Phys. Rev. D82, 034033 (2010) [2] Phys. Rev. D80, 072001 (2009) (CLEO-c) Measurement of the charm mixing and the phase parameters in a single experiment CLEO-c [2] 14

The prospects Estimates and expectations 15

Future landscape Super c-τ factory L = 10 35 cm 2 s 1 Detector upgrade Trigger improvements Operation at higher luminosity (tens of pp interactions per event) Increased hermeticity and K S 0 efficiency Improved IP and D vertex resolution, K/π separation and π 0 reconstruction Added PID and μ ID in end caps w.r.t. Belle HIEPA BINP Super c-τ factory 16

Timescale 17

Charm production σ pp D 0 X @ 13 TeV 2 mb σ e + e cc ҧ @ Υ 4S 1.3 nb σ e + e cc ҧ @ ψ 3770 6 nb Parameter Decay time Incoherent decays Coherent decays Belle+BaBar (1.5 ab 1 ) Belle II (50 ab 1 ) LHCb (5 fb 1 ) LHCb (50 fb 1 ) Super c-τ (10 ab 1 ) N D 0 K π + untagged, 10 6 40000 [1] 100 N D + D 0 π +, D 0 K π +, 10 6 2.5 [2] 140 [2] 100 [1] 7000 [1] 20* N D + K π + π +, 10 6 1.2 [3] 40 150 [1] 11000 [1] 200 N D s + φπ +, 10 6 0.5 17 13 [1] 1000 [1] 40 * Expected yield of ψ 3770 D 0 ഥD 0 K π + K + π is shown for a Super c-τ factory [1] LHCb Collaboration, Eur. Phys. J. C73, 2373 (2013) «Implications of LHCb measurements and future prospects» [2] Physics at Super B Factory, arxiv:1002.5012 [hep-ex] [3] Phys. Rev. Lett. 102, 221802 (2009) 18

Future precision An order of magnitude precision improvement can be achieved in the next decade The numbers shown are very approximate. Analysis of systematic uncertainties is needed [1] Physics at Super B Factory, arxiv:1002.5012 [hep-ex], talk by M. Staric @ KEK FF 2014 [2] Implications of LHCb measurements and future prospects, Eur. Phys. J. C73, 2373 (2013) [3] A. Bondar et al., Phys. Rev. D82, 034033 (2010) Parameter Belle II [1] @ 50 ab 1 LHCb [2] @ 50 fb 1 WS semileptonic Super c-τ @ 10 ab 1 R M O 5 10 5 O 5 10 7? D Kπ WS decays y, 10 4 5 y, 10 4 4 2 cos δ Kπ 5 10 3 R D, 10 5 10 0.2 1 A D, 10 4 3?? D h + h (CP eigenstates) y CP, 10 4 4 0.4 4 A Γ, 10 4 3 O 0.1? D 0 K S 0 π + π Dalitz plot analysis x, 10 4 8 1.7 O 1 [3] y, 10 4 5 1.9 O 1 [3] q/p 0.06 0.04 O 0.01 [3] arg q/p 4 3 O 1 [3] 19

Global fit for Belle II @ 50 ab 1 Alan Schwartz, IX th CKM UT Workshop (Dec. 1, 2016) No mixing No CPV Current fit Year 2025 20

Global fit for LHCb Upgr. Phase II @ 300 fb 1 CERN-LHCC-2017-003 (Feb. 8, 2017) Year 2035+ 21

Conclusions 1. Precise measurement of the charm mixing is a fundamental test of the SM 2. The existing measurements are consistent with the SM expectations 3. LHCb and Belle II are going to measure the charm mixing parameters at the precision level of O 10 4 access CP violation in charm at the SM values (A Γ 10 5 ) 4. A Super c-τ factory with L = 10 35 cm 2 s 1 is competitive for the charm mixing measurement 5. Measurements with quantum correlations will play an important role for the future charm mixing measurements 22