Tips & Tricks GPC/SEC: Quantify and Get More Than Molar Mass Averages

Similar documents
Tips & Tricks GPC/SEC: Inter-Detector Delay

Tips & Tricks GPC/SEC: From a Chromatogram to the Molar Mass Distribution

Tips & Tricks GPC/SEC: Protein Analysis with Size-Exclusion Chromatography

Polymer analysis by GPC-SEC. Technical Note. Introduction

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005

The Theory of HPLC. Quantitative and Qualitative HPLC

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

GPC/SEC Practical Tips and Tricks. Thomas Dent Applications Scientist Agilent Technologies. October, 2011 Gulf Coast Conference

Use of High Speed/High Resolution Size-Based Chromatographic Separation of Polymeric Mixtures with Offline Infrared Detection

Luminescence transitions. Fluorescence spectroscopy

Chapter 14. Molar Mass Distribution.

Chromatography Outline

Differentiation of polymer branching and composition using the Mark Houwink plot

GPC / SEC Theory and Understanding

Chemistry Gas Chromatography: Separation of Volatile Organics

Instrumental Chemical Analysis

Introduction to Pharmaceutical Chemical Analysis

GPC/SEC Troubleshooting Volume 1

Chromatography & instrumentation in Organic Chemistry

High Performance Liquid Chromatography

Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. Molecular weight of polymers. H i

Introduction. Chapter 1. Learning Objectives

Varian Galaxie Chromatography Data System for Preparative HPLC

Waters GPC User Guide and Tutorial for Using the GPC in the Reynolds Research Group 2 nd Edition: April 2012

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

GPC/SEC An essential tool for polymer analysis

Spectroscopy and Chromatography

HPLC Praktikum Skript

Tips & Tricks GPC/SEC: Branching Analysis

Analytical Strategy: HS 2014 Rafael Hodel, Stefanie Jucker. Quality Control: Quantitative Nuclear Magnetic Resonance

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis

Analytical Chemistry

Unexpected Peaks in Chromatograms - Are They Related Compounds, System Peaks or Contaminations? From the Diary of an HPLC Detective

Determination of Polyacrylic Acid in Boiler Water Using Size-Exclusion Chromatography with Charged Aerosol Detection

Comparison of Polymer Separation by Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation

PDG.pdf G-20 CHROMATOGRAPHY 3 4 INTRODUCTION

Determination of Polymer Modifier in Asphalt

x Contents 3 The Stationary Phase in Thin-Layer Chromatography Activating and Deactivating Stationary Phases Snyder s Adsorption M

Approaches to quantify the effect of extracted plant material on PHC levels.

Response to Questions Raised by Tom Phillips Concerning the Enforcement Analyitical Method for Avail and Nutrisphere Products. Verdesain Life Sciences


Lecture 4 : Gel Permeation or Size Exclusion Chromatography

Comprehensive Polymer Analysis Strategies

High Performance Liquid Chromatography

EcoSEC - semi-micro GPC/SEC system for high throughput polymer analysis

Test Report in accordance CDPH-IAQ

Research Equipment in the UCA Chemistry Department

Dr. Christoph Johann Wyatt Technology Europe GmbH Copyright Wyatt Technology Europe GmbH All Rights reserved 1

How to use GPC/SEC for compositional analysis

CHROMATOGRAPHY AND MASS SPECTROMETER

Chromatographic Analysis

c) fitting of the NMR intensity in dependence of the recycle delays 4

What is Chromatography?

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

Techniques useful in biodegradation tracking and biodegradable polymers characterization

CHEM 429 / 529 Chemical Separation Techniques

Questions on Instrumental Methods of Analysis

HPLC Background Chem 250 F 2008 Page 1 of 24

IR-LC Deposition and Detection System. Polymer Deformulation and Additive Analysis by a Single GPC-IR Run

NaturalFacts. Introducing our team. New product announcements, specials and information from New Roots Herbal. April 2009

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Measurement techniques

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

Open Column Chromatography, GC, TLC, and HPLC

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

CHROMATOGRAPHIC SEPARATION TECHNIQUES SUPERCRITICAL FLUID CHROMATOGRAPHY

Chromatography and other Separation Methods

An Introductions to Advanced GPC Solutions

Chromatographic Separation

Gas Chromatography. A schematic diagram of a gas chromatograph

The power of multi-detector SEC in the analysis of antibodies

OVERVIEW INTRODUCTION. Michael O Leary, Jennifer Gough, Tanya Tollifson Waters Corporation, Milford, MA USA

Liquid Chromatography

Biochemistry. Biochemical Techniques HPLC

SEAMLESS INTEGRATION OF MASS DETECTION INTO THE UV CHROMATOGRAPHIC WORKFLOW

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

GPC - Gel Permeation Chromatography. aka Size Exclusion Chromatography- SEC

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography)

Experiment UPHPLC: Separation and Quantification of Components in Diet Soft Drinks

Chromatography and Functional Group Analysis

Macromolecular Chemistry

A Total Solution for Explosives Analysis by Reversed-Phase HPLC with a Parallel HPLC System

Understanding Your Spectra Module. Agilent OpenLAB CDS ChemStation Edition

Gas Chromatography (GC)

Quick guide to selecting columns and standards for Gel Permeation Chromatography and Size Exclusion Chromatography SELECTION GUIDE

CHAPTER 6 GAS CHROMATOGRAPHY

Ch 313 FINAL EXAM OUTLINE Spring 2010

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Principles of Gas- Chromatography (GC)

Sem /2007. Fisika Polimer Ariadne L. Juwono

The Analysis of Residual Solvents in Pharmaceutical Products Using GC-VUV and Static Headspace

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS

Chromatography. Gas Chromatography

Glossary. Analyte - the molecule of interest when performing a quantitative analysis.

PART III B METHODS OF ANALYSIS/ANALYTICAL SCHEME FOR IDENTIFICATION OF DRUGS OR CHEMICALS

Determination of Caffeine by HPLC

MEASURING PROTEIN AGGREGATION WITH THE VISCOTEK SEC-MALS 20

Transcription:

Tips & Tricks GPC/SEC: Quantify and Get More Than Molar Mass Averages Daniela Held, PSS Polymer Standards Service GmbH, Mainz, Germany Gel permeation chromatography/size-exclusion chromatography (GPC/SEC) is used to determine molar mass averages and the complete molar mass distribution with just one injection. This is possible because GPC/SEC is a fractionating technique. The fractionation power allows the higher molar mass fraction to be characterized and more about low molar mass compounds such as oligomers, additives, or residual educts to be learned. Photo Credit: kentoh/shutterstock.com Gel permeation chromatography/ size-exclusion chromatography (GPC/SEC) is a liquid chromatographic fractionating technique that separates molecules based on their size in solution. The fractionation occurs in the pores of particles, which have been packed into a separation column. Molecules of larger sizes cannot enter the pores and therefore elute first, while the smaller ones penetrate the pores and elute later. A typical GPC/SEC calibration curve (see Figure 1), where the logarithm of the molar mass is plotted versus the elution volume, illustrates this behaviour nicely and helps to distinguish between three regions. In region 1, the region between the injection volume and the exclusion limit, nothing can elute. At the exclusion limit, very large molecules of the sample, independent of their size, elute at the same elution volume because the molecules (compared to the pores) are too large to enter the pores. Region starts at the exclusion limit. This is where efficient size separation begins as the molecules can enter some pores but are excluded from others. Here the molar mass distribution can be accurately determined. Region ends at the limit of total penetration. At the total penetration limit, the molecules in solution are so small that all of them can penetrate all pores. Region 3 begins after the total penetration limit. It is this region that is the most interesting for learning more about low molar mass fractions or additives. In theory, if the driving force for separation is pure interaction-free size-exclusion, it should not be possible to separate molecules such as toluene from butylated hydroxytoluene (BHT) or acetone. However, there is often a separation. 1

Figure 1: A typical GPC/SEC calibration curve constructed using molar mass standards with a narrow molar mass distribution (each green dot is one standard) illustrates the three regions. At the exclusion limit and the total penetration limit separation starts and ends, respectively. Figure shows the overlay of chromatograms of BHT, toluene, and acetone obtained using a column with a medium molar mass separation range. There is a (baseline) separation, which cannot be explained by the size difference of the molecules alone. Therefore, the separation must result from enthalpic interactions between the analyte and the stationary phase, indicating that a mixed mode mechanism is operating. This means that both molecular size and interaction of the molecules with the stationary phase contribute to the elution behaviour. Although interactions should be strongly avoided when determining molar masses of polymers by GPC/SEC, this mixed separation can be an advantage because it allows the identification and even quantification of low molar mass substances. 15 1

Figure : Overlay of BHT (blue), toluene (green), and acetone (black) injected in three individual runs onto the same GPC/SEC column with a medium molar mass separation range. Although the size of the molecules in solution is so small that they all fit into pores, a separation is observed. Figure 3: Chromatogram of an oil sample. Overlay with a blank injection allowed peaks F and G to be identified as system peaks. Peak E is the internal flow marker BHT. The figure inset shows a zoom of the low molar mass fractions, where peaks C and D should be identified and quantified. Identification Figure 3 shows a chromatogram of a QC sample with a broad polymer peak and different peaks eluting at the low molar mass end (high elution volumes) and close to the total penetration limit. The very first step is to distinguish between peaks belonging to the sample and typical system peaks. This can be done by measuring a blank sample pure mobile phase (ideally solvent taken from the mobile phase bottle) which has been treated in the same way as the sample. An overlay of the blank injection with the sample can show which peaks are system peaks. In Figure 3 the two peaks F and G have been identified as system peaks (1). Peak E also does not belong to the sample and results from the added internal flow marker, BHT (). The sample itself contains a polymer part (Peak A) with a long tailing. In the tailing area three peaks (B, C, and D) should be further characterized. Several strategies can now be applied to identify the peaks. If there is already a suspect (for example, educts from the production process, residual monomer, or a known solvent, initiator, or additive) and the pure substances are available, they can be prepared and injected as separate samples. Assigning the peaks can be done by overlaying the chromatograms or comparing the elution volumes. It is also possible to spike the original sample with the suspected substance and to monitor an increase in the respective peak area. However, relying only on the peak position might not be sufficient. Verification can be performed by advanced detection techniques or fraction collection followed by an off-line 1 1

characterization. This is also recommended when there is no information at all about potential additives or contaminants. An easy and cost-effective approach is the use of additional ultraviolet (UV) detection. Often GPC/SEC systems already comprise two different types of concentration detectors: the more universal refractive index detector (RI), and the more specific UV detector (or diode array detector/photodiode array [DAD/PDA]). If the substance is UV-active, the UV wavelength can be chosen to specifically detect the substance. If a DAD/PDA is available, the spectra can also be used for identification. It requires more effort to hyphenate GPC/SEC with on-line mass spectrometry (MS), nuclear magnetic resonance (NMR), or (for a limited number of solvents) with Fourier-transform infrared spectrometry (FTIR) detection (3). A very practical approach is fractionation followed by an off-line analysis. As GPC/SEC is a non-destructive technique, it is possible to collect fractions and to apply spectroscopic or spectrometric techniques off-line to characterize the fractions. If the amount of collected fraction is not sufficient, repeated fractionations can be performed. Analytical GPC/SEC systems can easily be upgraded to semi-preparative systems by replacing the analytical column with a preparative column, so that higher amounts can be injected. Automation is possible by adding a fraction collector. An elegant way to hyphenate GPC/SEC with FTIR connection is the use of an on-line collection module. This FTIR interface is connected as the last device in the system. A heated nozzle evaporates the solvent as the effluent leaves the column and the nonvolatile components are deposited on a rotating Germanium disk, resulting in a special separation of the different components. After the run is finished, the trace on the Germanium disk is analyzed spot by spot using an FTIR spectrometer. A similar approach is possible for matrix-assisted laser desorption/ionization (MALDI) instruments. Problematic for both approaches, fraction collection and FTIR/MALDI hyphenation, are nonvolatile additives such as salts, which are sometimes required to ensure proper GPC/SEC separation. Replacement by volatile salts is therefore needed (4). Quantification Figure 4 shows detailed example results for the high molar mass peak and the 17 1

Figure 4: Chromatogram of another oil sample with the results displayed. The absolute molar masses for peak A are given (GPC/SEC light scattering) as well as the relative amount of the four identified peaks in this sample. three low molar mass peaks. Here the absolute molar mass distribution of the polymer peak is determined using GPC/SEC light scattering. Simultaneously the RI detector signal is used to determine the relative peak areas (composition results). Therefore, within just one run the sample is fully characterized. Quantification in such a setup is possible. Just as in high performance liquid chromatography (HPLC) analysis, the area percentage of each peak is easily determined. However, absolute concentrations can also be determined. Once the peaks are identified the pure substances can be injected at known concentrations to determine the RI detector response factors for every single peak. Once the response factors are known they can be used to determine the concentration of each individual peak. Please note that this detector calibration differs from the typical GPC/SEC calibration. While the detector calibration requires a pure substance with a known concentration to be injected, GPC/SEC calibration requires the injection of several standards with known molar masses to yield a calibration curve similar to the one shown in Figure 1 (5). Summary t (1$4&$JTBOPOEFTUSVDUJWF fractionation technique. t 5XPEJGGFSFOUUZQFTPGJOGPSNBUJPO can be obtained simultaneously, the percentage peak area and the molar mass distribution. t 0WFSMBZTDBOIFMQUPJEFOUJGZQFBLT if there are hints from production or processing. Special detection (UV [spectra], FTIR, MS) can be applied to identify peaks either on-line or off-line after fractionation. t %FUFDUPSSFTQPOTFGBDUPSTDBOCF determined analogous to typical HPLC analysis. These factors allow the concentration determination using the measured peak area to be found. References 1. D. Held, The Column (), 1 0 (010).. D. Held, The Column 1(), 4 7 (01). 3. H. Pasch and P. Kilz, Coupled Liquid Chromatographic Techniques in Molecular Characterization, Encyclopedia of Analytical Chemistry (Wiley Online Library, 00). 4. D. Held, The Column (18), 5 (013). 5. D. Held, The Column 4(), 18 1 (008). Daniela Held studied polymer chemistry in Mainz, Germany, and works in the PSS software and instrument department. She is also responsible for education and customer training. E-mail: Website: DHeld@pss-polymer.com www.pss-polymer.com 18 1